Universal orbital and magnetic structures in infinite-layer nickelates (2312.16444v1)
Abstract: We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations in all three compounds. By fitting to a linear spin-wave theory, comparable spin exchange coupling strengths and damping coefficients are extracted, indicating a universal magnetic structure in the infinite-layer nickelates. Interestingly, while signatures of a charge order are observed in LaNiO2 in the quasi-elastic region of the RIXS spectrum, it is absent in NdNiO2 and PrNiO2. This prompts further investigation into the universality and the origins of charge order within the infinite-layer inickelates.
- V. I. Anisimov, D. Bukhvalov, and T. M. Rice, Electronic structure of possible nickelate analogs to the cuprates, Phys. Rev. B 59, 7901 (1999).
- K.-W. Lee and W. E. Pickett, Infinite-layer LaNiO2subscriptLaNiO2\mathrm{La}\mathrm{Ni}{\mathrm{O}}_{2}roman_LaNiO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT: Ni1+superscriptNilimit-from1{\mathrm{Ni}}^{1+}roman_Ni start_POSTSUPERSCRIPT 1 + end_POSTSUPERSCRIPT is not Cu2+superscriptCulimit-from2{\mathrm{Cu}}^{2+}roman_Cu start_POSTSUPERSCRIPT 2 + end_POSTSUPERSCRIPT, Phys. Rev. B 70, 165109 (2004).
- A. S. Botana and M. R. Norman, Similarities and Differences between LaNiO2subscriptLaNiO2{\mathrm{LaNiO}}_{2}roman_LaNiO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and CaCuO2subscriptCaCuO2{\mathrm{CaCuO}}_{2}roman_CaCuO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Implications for Superconductivity, Phys. Rev. X 10, 011024 (2020).
- J. Kapeghian and A. S. Botana, Electronic structure and magnetism in infinite-layer nickelates RNiO2𝑅subscriptNiO2R{\mathrm{NiO}}_{2}italic_R roman_NiO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT (R=La−Lu𝑅LaLuR=\mathrm{La}\text{$-$}\mathrm{Lu}italic_R = roman_La - roman_Lu), Phys. Rev. B 102, 205130 (2020).
- F. Lechermann, Late transition metal oxides with infinite-layer structure: Nickelates versus cuprates, Phys. Rev. B 101, 081110 (2020).
- I. Leonov, S. L. Skornyakov, and S. Y. Savrasov, Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO2subscriptNdNiO2{\mathrm{NdNiO}}_{2}roman_NdNiO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT upon hole doping, Phys. Rev. B 101, 241108 (2020).
- A. Subedi, Possible structural quantum criticality tuned by rare-earth ion substitution in infinite-layer nickelates, Phys. Rev. Mater. 7, 024801 (2023).
- See Supplemental Material at [URL] for additional experiment details, data and analysis.
- J. Lamsal and W. Montfrooij, Extracting paramagnon excitations from resonant inelastic x-ray scattering experiments, Phys. Rev. B 93, 214513 (2016).
- M. Hayward and M. Rosseinsky, Synthesis of the infinite layer Ni(I) phase NdNiO2+x2𝑥{}_{2+x}start_FLOATSUBSCRIPT 2 + italic_x end_FLOATSUBSCRIPT by low temperature reduction of NdNiO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT with sodium hydride, Solid State Sci. 5, 839 (2003).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.