Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RecRanker: Instruction Tuning Large Language Model as Ranker for Top-k Recommendation (2312.16018v3)

Published 26 Dec 2023 in cs.IR

Abstract: LLMs have demonstrated remarkable capabilities and have been extensively deployed across various domains, including recommender systems. Prior research has employed specialized \textit{prompts} to leverage the in-context learning capabilities of LLMs for recommendation purposes. More recent studies have utilized instruction tuning techniques to align LLMs with human preferences, promising more effective recommendations. However, existing methods suffer from several limitations. The full potential of LLMs is not fully elicited due to low-quality tuning data and the overlooked integration of conventional recommender signals. Furthermore, LLMs may generate inconsistent responses for different ranking tasks in the recommendation, potentially leading to unreliable results. In this paper, we introduce \textbf{RecRanker}, tailored for instruction tuning LLMs to serve as the \textbf{Ranker} for top-\textit{k} \textbf{Rec}ommendations. Specifically, we introduce an adaptive sampling module for sampling high-quality, representative, and diverse training data. To enhance the prompt, we introduce a position shifting strategy to mitigate position bias and augment the prompt with auxiliary information from conventional recommendation models, thereby enriching the contextual understanding of the LLM. Subsequently, we utilize the sampled data to assemble an instruction-tuning dataset with the augmented prompts comprising three distinct ranking tasks: pointwise, pairwise, and listwise rankings. We further propose a hybrid ranking method to enhance the model performance by ensembling these ranking tasks. Our empirical evaluations demonstrate the effectiveness of our proposed RecRanker in both direct and sequential recommendation scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender systems survey,” Knowledge-based systems, vol. 46, pp. 109–132, 2013.
  2. S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system: A survey and new perspectives,” ACM computing surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.
  3. C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin, X. He et al., “A survey of graph neural networks for recommender systems: Challenges, methods, and directions,” ACM Transactions on Recommender Systems, vol. 1, no. 1, pp. 1–51, 2023.
  4. X. Yang, H. Steck, Y. Guo, and Y. Liu, “On top-k recommendation using social networks,” in Proceedings of the sixth ACM conference on Recommender systems, 2012, pp. 67–74.
  5. Z. Zhu, J. Wang, and J. Caverlee, “Improving top-k recommendation via jointcollaborative autoencoders,” in The World Wide Web Conference, 2019, pp. 3483–3482.
  6. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in Proceedings of the 26th international conference on world wide web, 2017, pp. 173–182.
  7. X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative filtering,” in Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval, 2019, pp. 165–174.
  8. X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn: Simplifying and powering graph convolution network for recommendation,” in Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, 2020, pp. 639–648.
  9. W.-C. Kang and J. McAuley, “Self-attentive sequential recommendation,” in 2018 IEEE international conference on data mining (ICDM).   IEEE, 2018, pp. 197–206.
  10. F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer,” in Proceedings of the 28th ACM international conference on information and knowledge management, 2019, pp. 1441–1450.
  11. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  12. OpenAI, “Gpt-4 technical report,” 2023.
  13. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.
  14. R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa, P. Bailey, Z. Chen et al., “Palm 2 technical report,” arXiv preprint arXiv:2305.10403, 2023.
  15. M. Du, F. He, N. Zou, D. Tao, and X. Hu, “Shortcut learning of large language models in natural language understanding: A survey,” arXiv preprint arXiv:2208.11857, 2022.
  16. G. Todd, S. Earle, M. U. Nasir, M. C. Green, and J. Togelius, “Level generation through large language models,” in Proceedings of the 18th International Conference on the Foundations of Digital Games, 2023, pp. 1–8.
  17. T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are zero-shot reasoners,” Advances in neural information processing systems, vol. 35, pp. 22 199–22 213, 2022.
  18. L. Wu, Z. Zheng, Z. Qiu, H. Wang, H. Gu, T. Shen, C. Qin, C. Zhu, H. Zhu, Q. Liu et al., “A survey on large language models for recommendation,” arXiv preprint arXiv:2305.19860, 2023.
  19. W. Fan, Z. Zhao, J. Li, Y. Liu, X. Mei, Y. Wang, J. Tang, and Q. Li, “Recommender systems in the era of large language models (llms),” arXiv preprint arXiv:2307.02046, 2023.
  20. J. Lin, X. Dai, Y. Xi, W. Liu, B. Chen, X. Li, C. Zhu, H. Guo, Y. Yu, R. Tang et al., “How can recommender systems benefit from large language models: A survey,” arXiv preprint arXiv:2306.05817, 2023.
  21. Y. Hou, J. Zhang, Z. Lin, H. Lu, R. Xie, J. McAuley, and W. X. Zhao, “Large language models are zero-shot rankers for recommender systems,” arXiv preprint arXiv:2305.08845, 2023.
  22. J. Liu, C. Liu, R. Lv, K. Zhou, and Y. Zhang, “Is chatgpt a good recommender? a preliminary study,” arXiv preprint arXiv:2304.10149, 2023.
  23. L. Wang and E.-P. Lim, “Zero-shot next-item recommendation using large pretrained language models,” arXiv preprint arXiv:2304.03153, 2023.
  24. J. Zhang, R. Xie, Y. Hou, W. X. Zhao, L. Lin, and J.-R. Wen, “Recommendation as instruction following: A large language model empowered recommendation approach,” arXiv preprint arXiv:2305.07001, 2023.
  25. X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou, “Self-consistency improves chain of thought reasoning in language models,” arXiv preprint arXiv:2203.11171, 2022.
  26. J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for collaborative filtering,” arXiv preprint arXiv:1301.7363, 2013.
  27. B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations with recurrent neural networks,” arXiv preprint arXiv:1511.06939, 2015.
  28. W. Wei, X. Ren, J. Tang, Q. Wang, L. Su, S. Cheng, J. Wang, D. Yin, and C. Huang, “Llmrec: Large language models with graph augmentation for recommendation,” arXiv preprint arXiv:2311.00423, 2023.
  29. Y. Zhang, F. Feng, J. Zhang, K. Bao, Q. Wang, and X. He, “Collm: Integrating collaborative embeddings into large language models for recommendation,” arXiv preprint arXiv:2310.19488, 2023.
  30. X. Ren, W. Wei, L. Xia, L. Su, S. Cheng, J. Wang, D. Yin, and C. Huang, “Representation learning with large language models for recommendation,” arXiv preprint arXiv:2310.15950, 2023.
  31. Z. Yang, J. Wu, Y. Luo, J. Zhang, Y. Yuan, A. Zhang, X. Wang, and X. He, “Large language model can interpret latent space of sequential recommender,” arXiv preprint arXiv:2310.20487, 2023.
  32. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian personalized ranking from implicit feedback,” arXiv preprint arXiv:1205.2618, 2012.
  33. J. Yang, X. Yi, D. Zhiyuan Cheng, L. Hong, Y. Li, S. Xiaoming Wang, T. Xu, and E. H. Chi, “Mixed negative sampling for learning two-tower neural networks in recommendations,” in Companion Proceedings of the Web Conference 2020, 2020, pp. 441–447.
  34. S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu, T. Zhang, F. Wu et al., “Instruction tuning for large language models: A survey,” arXiv preprint arXiv:2308.10792, 2023.
  35. K. Bao, J. Zhang, Y. Zhang, W. Wang, F. Feng, and X. He, “Tallrec: An effective and efficient tuning framework to align large language model with recommendation,” arXiv preprint arXiv:2305.00447, 2023.
  36. S. Luo, C. Ma, Y. Xiao, and L. Song, “Improving long-tail item recommendation with graph augmentation,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 1707–1716.
  37. Y.-J. Park and A. Tuzhilin, “The long tail of recommender systems and how to leverage it,” in Proceedings of the 2008 ACM conference on Recommender systems, 2008, pp. 11–18.
  38. J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,” Journal of the royal statistical society. series c (applied statistics), vol. 28, no. 1, pp. 100–108, 1979.
  39. D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.
  40. C. Chen, W. Ma, M. Zhang, C. Wang, Y. Liu, and S. Ma, “Revisiting negative sampling vs. non-sampling in implicit recommendation,” ACM Transactions on Information Systems, vol. 41, no. 1, pp. 1–25, 2023.
  41. P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recommendations,” in Proceedings of the 10th ACM conference on recommender systems, 2016, pp. 191–198.
  42. P. Wang, L. Li, L. Chen, D. Zhu, B. Lin, Y. Cao, Q. Liu, T. Liu, and Z. Sui, “Large language models are not fair evaluators,” arXiv preprint arXiv:2305.17926, 2023.
  43. L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing et al., “Judging llm-as-a-judge with mt-bench and chatbot arena,” arXiv preprint arXiv:2306.05685, 2023.
  44. Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
  45. R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto, “Stanford alpaca: An instruction-following llama model,” https://github.com/tatsu-lab/stanford_alpaca, 2023.
  46. F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” Acm transactions on interactive intelligent systems (tiis), vol. 5, no. 4, pp. 1–19, 2015.
  47. C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving recommendation lists through topic diversification,” in Proceedings of the 14th international conference on World Wide Web, 2005, pp. 22–32.
  48. S. Luo, X. Zhang, Y. Xiao, and L. Song, “Hysage: A hybrid static and adaptive graph embedding network for context-drifting recommendations,” in Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022, pp. 1389–1398.
  49. T. Huang, Y. Dong, M. Ding, Z. Yang, W. Feng, X. Wang, and J. Tang, “Mixgcf: An improved training method for graph neural network-based recommender systems,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 665–674.
  50. J. Yu, H. Yin, X. Xia, T. Chen, J. Li, and Z. Huang, “Self-supervised learning for recommender systems: A survey,” IEEE Transactions on Knowledge and Data Engineering, 2023.
  51. X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, J. Zhang, B. Ding, and B. Cui, “Contrastive learning for sequential recommendation,” in 2022 IEEE 38th international conference on data engineering (ICDE).   IEEE, 2022, pp. 1259–1273.
  52. S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory optimizations toward training trillion parameter models,” in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.   IEEE, 2020, pp. 1–16.
  53. T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and memory-efficient exact attention with io-awareness,” Advances in Neural Information Processing Systems, vol. 35, pp. 16 344–16 359, 2022.
  54. W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management for large language model serving with pagedattention,” arXiv preprint arXiv:2309.06180, 2023.
  55. S. Dai, N. Shao, H. Zhao, W. Yu, Z. Si, C. Xu, Z. Sun, X. Zhang, and J. Xu, “Uncovering chatgpt’s capabilities in recommender systems,” arXiv preprint arXiv:2305.02182, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (12)
  1. Sichun Luo (15 papers)
  2. Bowei He (34 papers)
  3. Haohan Zhao (2 papers)
  4. Yinya Huang (22 papers)
  5. Aojun Zhou (45 papers)
  6. Zongpeng Li (29 papers)
  7. Yuanzhang Xiao (32 papers)
  8. Mingjie Zhan (23 papers)
  9. Linqi Song (93 papers)
  10. Wei Shao (95 papers)
  11. Yanlin Qi (6 papers)
  12. Yuxuan Yao (26 papers)
Citations (18)
Youtube Logo Streamline Icon: https://streamlinehq.com