Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Evolution of Tidal Disruption Event Disks with Magnetically Driven Winds (2312.15415v2)

Published 24 Dec 2023 in astro-ph.HE

Abstract: We present a time-dependent, one-dimensional, magnetically-driven disk wind model based on magnetohydrodynamic (MHD) equations, in the context of tidal disruption events (TDEs). We assume that the disk is geometrically thin and gas-pressure dominated, and explicitly accounts for magnetic braking and turbulent viscosity through an extended alpha-viscosity prescription. We find a particular wind solution for a set of basic equations that satisfies the necessary and sufficient conditions for vertically unbound MHD flows. The solution shows that the disk evolves with mass loss due to wind and accretion from the initial Gaussian density distribution. We confirm that the mass accretion rate follows the power law of time $t{-19/16}$ at late times in the absence of wind, which matches the classical solution of Cannizzo et al. (1990). We find that the mass accretion rate is steeper than the $t{-19/16}$ curve when the wind is present. Mass accretion is also induced by magnetic braking, known as the wind-driven accretion mechanism, which results in a faster decay with time of both the mass accretion and loss rates. In the disk emission, the ultraviolet (UV) luminosity is the highest among the optical, UV, and X-ray luminosities. While the optical and X-ray emission is observationally insignificant without magnetic braking, the X-ray emission is brighter at late times, especially in the presence of magnetic braking. This provides a possible explanation for observed delayed X-ray flares. Our model predicts that late-time bolometric light curves steeper than $t{-19/16}$ in UV-bright TDEs are potentially compelling indicators of magnetically driven winds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. K. Cannizzo, H. M. Lee, and J. Goodman, The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole, Astrophys. J.  351, 38 (1990).
  2. M. J. Rees, Tidal disruption of stars by black holes of 1066{}^{6}start_FLOATSUPERSCRIPT 6 end_FLOATSUPERSCRIPT-1088{}^{8}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPT solar masses in nearby galaxies, Nature (London) 333, 523 (1988).
  3. G. Lodato, A. R. King, and J. E. Pringle, Stellar disruption by a supermassive black hole: is the light curve really proportional to t−5/353{}^{-5/3}start_FLOATSUPERSCRIPT - 5 / 3 end_FLOATSUPERSCRIPT?,  Mon. Not. Roy. Astron. Soc. 392, 332 (2009), arXiv:0810.1288 [astro-ph] .
  4. E. C. A. Golightly, E. R. Coughlin, and C. J. Nixon, Tidal Disruption Events: The Role of Stellar Spin, Astrophys. J.  872, 163 (2019), arXiv:1901.03717 [astro-ph.HE] .
  5. G. Park and K. Hayasaki, Tidal Disruption Flares from Stars on Marginally Bound and Unbound Orbits, Astrophys. J.  900, 3 (2020), arXiv:2001.04548 [astro-ph.HE] .
  6. K. Hayasaki, N. Stone, and A. Loeb, Circularization of tidally disrupted stars around spinning supermassive black holes,  Mon. Not. Roy. Astron. Soc. 461, 3760 (2016), arXiv:1501.05207 [astro-ph.HE] .
  7. A. Mummery and S. A. Balbus, Evolution of relativistic thin discs with a finite ISCO stress - I. Stalled accretion,  Mon. Not. Roy. Astron. Soc. 489, 132 (2019), arXiv:1908.00322 [astro-ph.HE] .
  8. K. Auchettl, J. Guillochon, and E. Ramirez-Ruiz, New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths, Astrophys. J.  838, 149 (2017), arXiv:1611.02291 [astro-ph.HE] .
  9. A. P. Lightman and D. M. Eardley, Black Holes in Binary Systems: Instability of Disk Accretion,  Astrophys. J. Lett. 187, L1 (1974).
  10. L. E. Strubbe and E. Quataert, Optical flares from the tidal disruption of stars by massive black holes,  Mon. Not. Roy. Astron. Soc. 400, 2070 (2009), arXiv:0905.3735 [astro-ph.CO] .
  11. W.-M. Gu and J.-F. Lu, A Note on the Slim Accretion Disk Model, Astrophys. J.  660, 541 (2007), arXiv:astro-ph/0702185 [astro-ph] .
  12. X. Cao and W.-M. Gu, Limits on luminosity and mass accretion rate of a radiation-pressure-dominated accretion disc,  Mon. Not. Roy. Astron. Soc. 448, 3514 (2015), arXiv:1502.02892 [astro-ph.HE] .
  13. C. Bonnerot, E. M. Rossi, and G. Lodato, Long-term stream evolution in tidal disruption events,  Mon. Not. Roy. Astron. Soc. 464, 2816 (2017a), arXiv:1608.00970 [astro-ph.HE] .
  14. J. Guillochon and M. McCourt, Simulations of Magnetic Fields in Tidally Disrupted Stars,  Astrophys. J. Lett. 834, L19 (2017), arXiv:1609.08160 [astro-ph.HE] .
  15. E. P. Velikhov, , Zh. Eksp. Teor. Fiz. 36, 1398 (1959).
  16. S. Chandrasekhar, Hydrodynamic and hydromagnetic stability (1961).
  17. S. A. Balbus and J. F. Hawley, A Powerful Local Shear Instability in Weakly Magnetized Disks. I. Linear Analysis, Astrophys. J.  376, 214 (1991).
  18. T. K. Suzuki and S.-i. Inutsuka, Disk Winds Driven by Magnetorotational Instability and Dispersal of Protoplanetary Disks,  Astrophys. J. Lett. 691, L49 (2009), arXiv:0812.0844 [astro-ph] .
  19. T. K. Suzuki and S.-i. Inutsuka, Magnetohydrodynamic Simulations of Global Accretion Disks with Vertical Magnetic Fields, Astrophys. J.  784, 121 (2014), arXiv:1309.6916 [astro-ph.EP] .
  20. A. L. Piro and W. Lu, Wind-reprocessed Transients, Astrophys. J.  894, 2 (2020), arXiv:2001.08770 [astro-ph.HE] .
  21. B. Curd and R. Narayan, GRRMHD simulations of MAD accretion discs declining from super-Eddington to sub-Eddington accretion rates,  Mon. Not. Roy. Astron. Soc. 518, 3441 (2023), arXiv:2209.12081 [astro-ph.HE] .
  22. R. D. Blandford and D. G. Payne, Hydromagnetic flows from accretion disks and the production of radio jets.,  Mon. Not. Roy. Astron. Soc. 199, 883 (1982).
  23. T. K. Suzuki, T. Muto, and S.-i. Inutsuka, Protoplanetary Disk Winds via Magnetorotational Instability: Formation of an Inner Hole and a Crucial Assist for Planet Formation, Astrophys. J.  718, 1289 (2010), arXiv:0911.0311 [astro-ph.SR] .
  24. J. Frank, A. King, and D. J. Raine, Accretion Power in Astrophysics: Third Edition (2002).
  25. J. G. Hills, Possible power source of Seyfert galaxies and QSOs, Nature (London) 254, 295 (1975).
  26. J. F. Hawley, C. F. Gammie, and S. A. Balbus, Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks, Astrophys. J.  440, 742 (1995).
  27. R. Matsumoto and T. Tajima, Magnetic Viscosity by Localized Shear Flow Instability in Magnetized Accretion Disks, Astrophys. J.  445, 767 (1995).
  28. A. Jafari and E. T. Vishniac, Magnetic Field Transport in Accretion Disks, Astrophys. J.  854, 2 (2018).
  29. J. Li and X. Cao, The Large-scale Magnetic Field of a Thin Accretion Disk with Outflows, Astrophys. J.  872, 149 (2019), arXiv:1901.10103 [astro-ph.HE] .
  30. N. I. Shakura and R. A. Sunyaev, Black holes in binary systems. Observational appearance.,  Astron. & Astrophys. 24, 337 (1973).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.