Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Robust Hamiltonicity (2312.15262v2)

Published 23 Dec 2023 in math.CO

Abstract: We study conditions under which a given hypergraph is randomly robust Hamiltonian, which means that a random sparsification of the host graph contains a Hamilton cycle with high probability. Our main contribution provides nearly optimal results whenever the host graph is Hamilton connected in a locally robust sense, which translates to a typical induced subgraph of constant order containing Hamilton paths between any pair of suitable ends. The proofs are based on the recent breakthrough on Talagrand's conjecture, which reduces the problem to specifying a distribution on the desired guest structure in the (deterministic) host structure. We find such a distribution via a new argument that reduces the problem to the case of perfect matchings in a higher uniformity. As applications, we obtain asymptotically optimal results for perfect tilings in graphs and hypergraphs both in the minimum degree and uniformly dense setting. We also prove random robustness for powers of cycles under asymptotically optimal minimum degrees and degree sequences. We solve the problem for loose and tight Hamilton cycles in hypergraphs under a range of asymptotic minimum degree conditions. This includes in particular $k$-uniform tight Hamilton cycles under minimum $d$-degree conditions for $1\leq k-d \leq 3$. In all cases, our bounds on the sparseness are essentially best-possible.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.