2000 character limit reached
$β$ symmetry in type II Supergravities (2312.15061v3)
Published 22 Dec 2023 in hep-th
Abstract: A non geometric sector of the duality group emerging in Kaluza-Klein reductions is realized as an effective symmetry in the low energy action of uncompactified type II theories. This is achieved by extending the so called $\beta$ symmetry of the universal NS-NS sector to the R-R sector of type IIA, IIB and massive type IIA.
- K. A. Meissner and G. Veneziano, “Symmetries of cosmological superstring vacua,” Phys. Lett. B 267 (1991), 33-36 K. A. Meissner and G. Veneziano, “Manifestly O(d,d) invariant approach to space-time dependent string vacua,” Mod. Phys. Lett. A 6 (1991), 3397-3404
- J. Maharana and J. H. Schwarz, “Noncompact symmetries in string theory,” Nucl. Phys. B 390 (1993), 3-32 [arXiv:hep-th/9207016 [hep-th]].
- A. Sen, “O(d) x O(d) symmetry of the space of cosmological solutions in string theory, scale factor duality and two-dimensional black holes,” Phys. Lett. B 271 (1991), 295-300
- K. A. Meissner, “Symmetries of higher order string gravity actions,” Phys. Lett. B 392 (1997), 298-304 [arXiv:hep-th/9610131 [hep-th]].
- W. Siegel, “Two vierbein formalism for string inspired axionic gravity,” Phys. Rev. D 47 (1993), 5453-5459 [arXiv:hep-th/9302036 [hep-th]]. C. Hull and B. Zwiebach, “Double Field Theory,” JHEP 09 (2009), 099 [arXiv:0904.4664 [hep-th]].
- G. Aldazabal, W. Baron, D. Marques and C. Nunez, “The effective action of Double Field Theory,” JHEP 11 (2011), 052 [arXiv:1109.0290 [hep-th]]. D. Geissbuhler, “Double Field Theory and N=4 Gauged Supergravity,” JHEP 11 (2011), 116 [arXiv:1109.4280 [hep-th]].
- W. H. Baron, E. Lescano and D. Marqués, “The generalized Bergshoeff-de Roo identification,” JHEP 11 (2018), 160 [arXiv:1810.01427 [hep-th]]. W. Baron and D. Marques, “The generalized Bergshoeff-de Roo identification. Part II,” JHEP 01 (2021), 171 [arXiv:2009.07291 [hep-th]]. E. Lescano, C. A. Núñez and J. A. Rodríguez, “Supersymmetry, T-duality and heterotic α𝛼\alphaitalic_α’-corrections,” JHEP 07 (2021), 092 [arXiv:2104.09545 [hep-th]]. W. H. Baron, “Duality covariant field redefinitions,” Phys. Rev. D 105 (2022) no.10, 106015 [arXiv:2201.00030 [hep-th]]. E. Lescano and N. Mirón-Granese, “Double field theory with matter and the generalized Bergshoeff–de Roo identification,” Phys. Rev. D 107 (2023) no.8, 086008 [arXiv:2207.04041 [hep-th]].
- D. Marques and C. A. Nunez, “T-duality and α𝛼\alphaitalic_α’-corrections,” JHEP 10 (2015), 084 [arXiv:1507.00652 [hep-th]].
- S. Hronek and L. Wulff, “String theory at order α𝛼\alphaitalic_α’22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT and the generalized Bergshoeff-de Roo identification,” JHEP 11 (2021), 186 [arXiv:2109.12200 [hep-th]].
- S. Hronek and L. Wulff, “O(D,D)𝑂𝐷𝐷O(D,D)italic_O ( italic_D , italic_D ) and the string α′superscript𝛼′\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT expansion: an obstruction,” JHEP 04 (2021), 013 [arXiv:2012.13410 [hep-th]].
- W. H. Baron, D. Marques and C. A. Nunez, “β𝛽\betaitalic_β Symmetry of Supergravity,” Phys. Rev. Lett. 130 (2023) no.6, 061601 [arXiv:2209.02079 [hep-th]].
- W. H. Baron, D. Marques and C. A. Nunez, “Exploring the β𝛽\betaitalic_β symmetry of supergravity,” [arXiv:2307.02537 [hep-th]].
- M. R. Garousi, “Effective action of bosonic string theory at order α′2superscript𝛼′2\alpha^{\prime 2}italic_α start_POSTSUPERSCRIPT ′ 2 end_POSTSUPERSCRIPT,” Eur. Phys. J. C 79 (2019) no.10, 827 [arXiv:1907.06500 [hep-th]]. M. R. Garousi, “Effective action of type II superstring theories at order α′3superscript𝛼′3\alpha^{\prime 3}italic_α start_POSTSUPERSCRIPT ′ 3 end_POSTSUPERSCRIPT: NS-NS couplings,” JHEP 02 (2021), 157 [arXiv:2011.02753 [hep-th]]. M. R. Garousi, “Effective action of heterotic string theory at order α𝛼\alphaitalic_α’22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT,” JHEP 09 (2023), 020 [arXiv:2307.00544 [hep-th]].
- D. Andriot, O. Hohm, M. Larfors, D. Lust and P. Patalong, “A geometric action for non-geometric fluxes,” Phys. Rev. Lett. 108 (2012), 261602 [arXiv:1202.3060 [hep-th]].
- D. Andriot and A. Betz, “β𝛽\betaitalic_β-supergravity: a ten-dimensional theory with non-geometric fluxes, and its geometric framework,” JHEP 12 (2013), 083 [arXiv:1306.4381 [hep-th]].
- D. Andriot and A. Betz, “NS-branes, source corrected Bianchi identities, and more on backgrounds with non-geometric fluxes,” JHEP 07 (2014), 059 [arXiv:1402.5972 [hep-th]].
- J. i. Sakamoto, Y. Sakatani and K. Yoshida, “Homogeneous Yang-Baxter deformations as generalized diffeomorphisms,” J. Phys. A 50 (2017) no.41, 415401 [arXiv:1705.07116 [hep-th]]. J. J. Fernandez-Melgarejo, J. i. Sakamoto, Y. Sakatani and K. Yoshida, “T𝑇Titalic_T-folds from Yang-Baxter deformations,” JHEP 12 (2017), 108 [arXiv:1710.06849 [hep-th]].
- I. Bakhmatov and E. T. Musaev, “Classical Yang-Baxter equation from β𝛽\betaitalic_β-supergravity,” JHEP 01 (2019), 140 [arXiv:1811.09056 [hep-th]].
- I. Bakhmatov, Ö. Kelekci, E. Ó Colgáin and M. M. Sheikh-Jabbari, “Classical Yang-Baxter Equation from Supergravity,” Phys. Rev. D 98 (2018) no.2, 021901 [arXiv:1710.06784 [hep-th]]. I. Bakhmatov, E. Ó Colgáin, M. M. Sheikh-Jabbari and H. Yavartanoo, “Yang-Baxter Deformations Beyond Coset Spaces (a slick way to do TsT),” JHEP 06 (2018), 161 [arXiv:1803.07498 [hep-th]].
- F. Hassler, “Poisson-Lie T-duality in Double Field Theory,” Phys. Lett. B 807 (2020), 135455 [arXiv:1707.08624 [hep-th]]. S. Demulder, F. Hassler and D. C. Thompson, “Doubled aspects of generalised dualities and integrable deformations,” JHEP 02 (2019), 189 [arXiv:1810.11446 [hep-th]]. Y. Sakatani, “Type II DFT solutions from Poisson-Lie T-duality/plurality,” PTEP (2019) 073B04 [arXiv:1903.12175 [hep-th]].
- Y. Hyakutake and K. Maeyama, “Reconstruction of Type II Supergravities via O(d)×O(d)𝑂𝑑𝑂𝑑O(d)\times O(d)italic_O ( italic_d ) × italic_O ( italic_d ) Duality Invariants,” [arXiv:2311.04660 [hep-th]].
- E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest and A. Van Proeyen, “New formulations of D = 10 supersymmetry and D8 - O8 domain walls,” Class. Quant. Grav. 18 (2001), 3359-3382 [arXiv:hep-th/0103233 [hep-th]].
- M. Fukuma, T. Oota and H. Tanaka, “Comments on T dualities of Ramond-Ramond potentials on tori,” Prog. Theor. Phys. 103 (2000), 425-446 [arXiv:hep-th/9907132 [hep-th]].
- O. Hohm, S. K. Kwak and B. Zwiebach, “Unification of Type II Strings and T-duality,” Phys. Rev. Lett. 107 (2011), 171603 [arXiv:1106.5452 [hep-th]]. O. Hohm, S. K. Kwak and B. Zwiebach, “Double Field Theory of Type II Strings,” JHEP 09 (2011), 013 [arXiv:1107.0008 [hep-th]]. I. Jeon, K. Lee and J. H. Park, “Ramond-Ramond Cohomology and O(D,D) T-duality,” JHEP 09 (2012), 079 [arXiv:1206.3478 [hep-th]]. I. Jeon, K. Lee, J. H. Park and Y. Suh, “Stringy Unification of Type IIA and IIB Supergravities under N=2 D=10 Supersymmetric Double Field Theory,” Phys. Lett. B 723 (2013), 245-250 [arXiv:1210.5078 [hep-th]].
- O. Hohm and S. K. Kwak, “Massive Type II in Double Field Theory,” JHEP 11 (2011), 086 [arXiv:1108.4937 [hep-th]].
- A. Catal-Ozer, “Massive deformations of Type IIA theory within double field theory,” JHEP 02 (2018), 179 [arXiv:1706.08883 [hep-th]].
- J. Polchinski, “String Theory,” vol. 2. Cambridge University Press (1998).
- I. V. Lavrinenko, H. Lu, C. N. Pope and K. S. Stelle, “Superdualities, brane tensions and massive IIA / IIB duality,” Nucl. Phys. B 555 (1999), 201-227 [arXiv:hep-th/9903057 [hep-th]].
- M. Grana, R. Minasian, M. Petrini and D. Waldram, “T-duality, Generalized Geometry and Non-Geometric Backgrounds,” JHEP 04 (2009), 075 [arXiv:0807.4527 [hep-th]]. A. Coimbra, C. Strickland-Constable and D. Waldram, “Supergravity as Generalised Geometry I: Type II Theories,” JHEP 11 (2011), 091 [arXiv:1107.1733 [hep-th]]. D. Andriot and A. Betz, “Supersymmetry with non-geometric fluxes, or a β𝛽\betaitalic_β-twist in Generalized Geometry and Dirac operator,” JHEP 04 (2015), 006 [arXiv:1411.6640 [hep-th]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.