2000 character limit reached
3-anti-power uniform morphisms (2312.14514v1)
Published 22 Dec 2023 in cs.FL
Abstract: Words whose three successive factors of the same length are all different i.e. 3-anti-power words are a natural extension of square-free words (two successive factors of the same length are different). We give a way to verify whether a uniform morphism preserves 3-anti-power words (the image of a 3-anti-power word is a 3-anti-power word). A consequence of the existence of such morphisms is the possibility of generating an infinite 3-anti-power word.
- J. Berstel. Axel Thue’s papers on repetition in words: a translation. Technical Report 20, Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec, Montréal, 1995.
- M. Crochemore. Sharp characterizations of squarefree morphisms. Theoretical Computer Science, 18:221–226, 1982.
- A proof of dejean’s conjecture. Mathematics of computation, 80:1063–1070, 2011.
- F. Dejean. Sur un théorème de Thue. J. Comb. Theory, 13:90–99, 1972. series A.
- Anti-powers in infinite words. Journal of Combinatorial Theory, Series A, 157:109 – 119, 2018.
- V. Keränen. On the k𝑘kitalic_k-freeness of morphisms on free monoids. Annales Academiae Scientarium Fennicae 61, Series A, 1986.
- M. Leconte. Codes sans répétition. PhD thesis, LITP Université Paris 6, october 1985.
- Michaël Rao. Last cases of dejean’s conjecture. Theoretical Computer Science, 412(27):3010 – 3018, 2011. Combinatorics on Words (WORDS 2009).
- A. Thue. Uber unendliche zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv, 7:1–22, 1906.
- A. Thue. Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv, 1:1–67, 1912.