Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3-anti-power uniform morphisms (2312.14514v1)

Published 22 Dec 2023 in cs.FL

Abstract: Words whose three successive factors of the same length are all different i.e. 3-anti-power words are a natural extension of square-free words (two successive factors of the same length are different). We give a way to verify whether a uniform morphism preserves 3-anti-power words (the image of a 3-anti-power word is a 3-anti-power word). A consequence of the existence of such morphisms is the possibility of generating an infinite 3-anti-power word.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. J. Berstel. Axel Thue’s papers on repetition in words: a translation. Technical Report 20, Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec, Montréal, 1995.
  2. M. Crochemore. Sharp characterizations of squarefree morphisms. Theoretical Computer Science, 18:221–226, 1982.
  3. A proof of dejean’s conjecture. Mathematics of computation, 80:1063–1070, 2011.
  4. F. Dejean. Sur un théorème de Thue. J. Comb. Theory, 13:90–99, 1972. series A.
  5. Anti-powers in infinite words. Journal of Combinatorial Theory, Series A, 157:109 – 119, 2018.
  6. V. Keränen. On the k𝑘kitalic_k-freeness of morphisms on free monoids. Annales Academiae Scientarium Fennicae 61, Series A, 1986.
  7. M. Leconte. Codes sans répétition. PhD thesis, LITP Université Paris 6, october 1985.
  8. Michaël Rao. Last cases of dejean’s conjecture. Theoretical Computer Science, 412(27):3010 – 3018, 2011. Combinatorics on Words (WORDS 2009).
  9. A. Thue. Uber unendliche zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv, 7:1–22, 1906.
  10. A. Thue. Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv, 1:1–67, 1912.

Summary

We haven't generated a summary for this paper yet.