Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anti-Powers in Infinite Words

Published 9 Jun 2016 in cs.DM, cs.FL, and math.CO | (1606.02868v3)

Abstract: In combinatorics of words, a concatenation of $k$ consecutive equal blocks is called a power of order $k$. In this paper we take a different point of view and define an anti-power of order $k$ as a concatenation of $k$ consecutive pairwise distinct blocks of the same length. As a main result, we show that every infinite word contains powers of any order or anti-powers of any order. That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a stronger result, which relates the density of anti-powers to the existence of a factor that occurs with arbitrary exponent. As a consequence, we show that in every aperiodic uniformly recurrent word, anti-powers of every order begin at every position. We further show that every infinite word avoiding anti-powers of order $3$ is ultimately periodic, while there exist aperiodic words avoiding anti-powers of order $4$. We also show that there exist aperiodic recurrent words avoiding anti-powers of order $6$.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.