2000 character limit reached
Strings near black holes are Carrollian (2312.14240v2)
Published 21 Dec 2023 in hep-th and gr-qc
Abstract: We demonstrate that strings near the horizon of a Schwarzschild black hole, when viewed by a stationary observer at infinity, probe a string Carroll geometry, where the effective lightspeed is given by the distance from the horizon. We expand the Polyakov action in powers of this lightspeed to find a theory of Carrollian strings. We show that the string shrinks to a point to leading order near the horizon, which follows a null geodesic in a two-dimensional Rindler space. At the next-to-leading order the string oscillates in the embedding fields associated with the near-horizon two-sphere.
- R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1 (1969) 252–276.
- R. F. Penna, “Near-horizon Carroll symmetry and black hole Love numbers,” arXiv:1812.05643 [hep-th].
- L. Donnay and C. Marteau, “Carrollian Physics at the Black Hole Horizon,” Class. Quant. Grav. 36 no. 16, (2019) 165002, arXiv:1903.09654 [hep-th].
- D. Hansen, N. A. Obers, G. Oling, and B. T. Søgaard, “Carroll Expansion of General Relativity,” SciPost Phys. 13 no. 3, (2022) 055, arXiv:2112.12684 [hep-th].
- A. Pérez, “Asymptotic symmetries in Carrollian theories of gravity,” JHEP 12 (2021) 173, arXiv:2110.15834 [hep-th].
- J. Redondo-Yuste and L. Lehner, “Non-linear black hole dynamics and Carrollian fluids,” JHEP 02 (2023) 240, arXiv:2212.06175 [gr-qc].
- F. Ecker, D. Grumiller, J. Hartong, A. Pérez, S. Prohazka, and R. Troncoso, “Carroll black holes,” arXiv:2308.10947 [hep-th].
- See for example [65] for a detailed introduction.
- R. Andringa, E. Bergshoeff, J. Gomis, and M. de Roo, “’Stringy’ Newton-Cartan Gravity,” Class. Quant. Grav. 29 (2012) 235020, arXiv:1206.5176 [hep-th].
- E. A. Bergshoeff, J. Gomis, J. Rosseel, C. Simsek, and Z. Yan, “String Theory and String Newton-Cartan Geometry,” J. Phys. A 53 no. 1, (2020) 014001, arXiv:1907.10668 [hep-th].
- A. Bagchi, A. Banerjee, E. Have, J. Hartong, K. Kolekar, and M. Mandlik, “In preparation….”.
- N. Sen Gupta, “On an Analogue of the Galileo Group,” Nuovo Cim. 54 (1966) 512 • DOI: 10.1007/BF02740871 .
- J. Levy-Leblond, “Une nouvelle limite non-relativiste du group de Poincare,” Ann.Inst.Henri Poincare 3 (1965) 1.
- A. Bagchi, “Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories,” Phys.Rev.Lett. 105 (2010) 171601.
- G. Barnich, A. Gomberoff, and H. A. Gonzalez, “The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes,” Phys. Rev. D 86 (2012) 024020, arXiv:1204.3288 [gr-qc].
- A. Bagchi, S. Detournay, R. Fareghbal, and J. Simon, “Holography of 3D Flat Cosmological Horizons,” Phys.Rev.Lett. 110 no. 14, (2013) 141302, arXiv:1208.4372 [hep-th].
- G. Barnich, “Entropy of three-dimensional asymptotically flat cosmological solutions,” JHEP 10 (2012) 095, arXiv:1208.4371 [hep-th].
- A. Bagchi and R. Fareghbal, “BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries,” JHEP 1210 (2012) 092, arXiv:1203.5795 [hep-th].
- A. Bagchi, R. Basu, D. Grumiller, and M. Riegler, “Entanglement entropy in Galilean conformal field theories and flat holography,” Phys. Rev. Lett. 114 no. 11, (2015) 111602, arXiv:1410.4089 [hep-th].
- J. Hartong, “Holographic Reconstruction of 3D Flat Space-Time,” JHEP 10 (2016) 104, arXiv:1511.01387 [hep-th].
- A. Bagchi, R. Basu, A. Kakkar, and A. Mehra, “Flat Holography: Aspects of the dual field theory,” JHEP 12 (2016) 147, arXiv:1609.06203 [hep-th].
- L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi, “Carrollian Perspective on Celestial Holography,” Phys. Rev. Lett. 129 no. 7, (2022) 071602, arXiv:2202.04702 [hep-th].
- A. Bagchi, S. Banerjee, R. Basu, and S. Dutta, “Scattering Amplitudes: Celestial and Carrollian,” Phys. Rev. Lett. 128 no. 24, (2022) 241601, arXiv:2202.08438 [hep-th].
- J. Figueroa-O’Farrill, E. Have, S. Prohazka, and J. Salzer, “Carrollian and celestial spaces at infinity,” JHEP 09 (2022) 007, arXiv:2112.03319 [hep-th].
- L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi, “Bridging Carrollian and celestial holography,” Phys. Rev. D 107 no. 12, (2023) 126027, arXiv:2212.12553 [hep-th].
- A. Bagchi, P. Dhivakar, and S. Dutta, “AdS Witten diagrams to Carrollian correlators,” JHEP 04 (2023) 135, arXiv:2303.07388 [hep-th].
- A. Saha, “Carrollian approach to 1 + 3D flat holography,” JHEP 06 (2023) 051, arXiv:2304.02696 [hep-th].
- A. Bagchi, P. Dhivakar, and S. Dutta, “Holography in Flat Spacetimes: the case for Carroll,” arXiv:2311.11246 [hep-th].
- L. Mason, R. Ruzziconi, and A. Yelleshpur Srikant, “Carrollian Amplitudes and Celestial Symmetries,” arXiv:2312.10138 [hep-th].
- J. de Boer, J. Hartong, N. A. Obers, W. Sybesma, and S. Vandoren, “Carroll Symmetry, Dark Energy and Inflation,” Front. in Phys. 10 (2022) 810405, arXiv:2110.02319 [hep-th].
- A. Bagchi, K. S. Kolekar, and A. Shukla, “Carrollian Origins of Bjorken Flow,” Phys. Rev. Lett. 130 no. 24, (2023) 241601, arXiv:2302.03053 [hep-th].
- A. Bagchi, K. S. Kolekar, T. Mandal, and A. Shukla, “Heavy-ion collisions, Gubser flow, and Carroll hydrodynamics,” arXiv:2310.03167 [hep-th].
- L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos, and K. Siampos, “Flat holography and Carrollian fluids,” JHEP 07 (2018) 165, arXiv:1802.06809 [hep-th].
- L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos, and K. Siampos, “Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids,” Class. Quant. Grav. 35 no. 16, (2018) 165001, arXiv:1802.05286 [hep-th].
- A. Campoleoni, L. Ciambelli, C. Marteau, P. M. Petropoulos, and K. Siampos, “Two-dimensional fluids and their holographic duals,” Nucl. Phys. B 946 (2019) 114692, arXiv:1812.04019 [hep-th].
- A. C. Petkou, P. M. Petropoulos, D. R. Betancour, and K. Siampos, “Relativistic fluids, hydrodynamic frames and their Galilean versus Carrollian avatars,” JHEP 09 (2022) 162, arXiv:2205.09142 [hep-th].
- L. Freidel and P. Jai-akson, “Carrollian hydrodynamics from symmetries,” Class. Quant. Grav. 40 no. 5, (2023) 055009, arXiv:2209.03328 [hep-th].
- L. Freidel and P. Jai-akson, “Carrollian hydrodynamics and symplectic structure on stretched horizons,” arXiv:2211.06415 [gr-qc].
- J. de Boer, J. Hartong, N. A. Obers, W. Sybesma, and S. Vandoren, “Carroll stories,” arXiv:2307.06827 [hep-th].
- J. Armas and E. Have, “Carrollian fluids and spontaneous breaking of boost symmetry,” arXiv:2308.10594 [hep-th].
- L. Bidussi, J. Hartong, E. Have, J. Musaeus, and S. Prohazka, “Fractons, dipole symmetries and curved spacetime,” SciPost Phys. 12 no. 6, (2022) 205, arXiv:2111.03668 [hep-th].
- L. Marsot, P. M. Zhang, M. Chernodub, and P. A. Horvathy, “Hall effects in Carroll dynamics,” Phys. Rept. 1028 (2023) 1–60, arXiv:2212.02360 [hep-th].
- J. Figueroa-O’Farrill, A. Pérez, and S. Prohazka, “Carroll/fracton particles and their correspondence,” JHEP 06 (2023) 207, arXiv:2305.06730 [hep-th].
- J. Figueroa-O’Farrill, A. Pérez, and S. Prohazka, “Quantum Carroll/fracton particles,” arXiv:2307.05674 [hep-th].
- A. Bagchi, A. Banerjee, R. Basu, M. Islam, and S. Mondal, “Magic fermions: Carroll and flat bands,” JHEP 03 (2023) 227, arXiv:2211.11640 [hep-th].
- J. Isberg, U. Lindström, B. Sundborg, and G. Theodoridis, “Classical and quantized tensionless strings,” Nucl. Phys. B411 (1994) 122–156, arXiv:hep-th/9307108 [hep-th].
- A. Bagchi, “Tensionless Strings and Galilean Conformal Algebra,” JHEP 05 (2013) 141, arXiv:1303.0291 [hep-th].
- A. Bagchi, S. Chakrabortty, and P. Parekh, “Tensionless Strings from Worldsheet Symmetries,” JHEP 01 (2016) 158, arXiv:1507.04361 [hep-th].
- C. D. A. Blair, J. Lahnsteiner, N. A. J. Obers, and Z. Yan, “Unification of Decoupling Limits in String and M-theory,” arXiv:2311.10564 [hep-th].
- J. Gomis and Z. Yan, “Worldsheet Formalism for Decoupling Limits in String Theory,” arXiv:2311.10565 [hep-th].
- J. Hartong, “Gauging the Carroll Algebra and Ultra-Relativistic Gravity,” JHEP 08 (2015) 069, arXiv:1505.05011 [hep-th].
- J. Hartong and E. Have, “Nonrelativistic Expansion of Closed Bosonic Strings,” Phys. Rev. Lett. 128 no. 2, (2022) 021602, arXiv:2107.00023 [hep-th].
- J. Hartong and E. Have, “Nonrelativistic approximations of closed bosonic string theory,” JHEP 02 (2023) 153, arXiv:2211.01795 [hep-th].
- D. Hansen, J. Hartong, and N. A. Obers, “Action Principle for Newtonian Gravity,” Phys. Rev. Lett. 122 no. 6, (2019) 061106, arXiv:1807.04765 [hep-th].
- D. Hansen, J. Hartong, and N. A. Obers, “Non-Relativistic Gravity and its Coupling to Matter,” JHEP 06 (2020) 145, arXiv:2001.10277 [gr-qc].
- A. Bagchi, A. Banerjee, S. Chakrabortty, and R. Chatterjee, “A Rindler road to Carrollian worldsheets,” JHEP 04 (2022) 082, arXiv:2111.01172 [hep-th].
- C. Duval, G. Gibbons, and P. Horvathy, “Conformal Carroll groups and BMS symmetry,” Class.Quant.Grav. 31 (2014) 092001, arXiv:1402.5894 [gr-qc].
- C. Duval, G. Gibbons, and P. Horvathy, “Conformal Carroll groups,” J.Phys. A47 (2014) 335204, arXiv:1403.4213 [hep-th].
- A. Bagchi, A. Banerjee, and S. Chakrabortty, “Rindler Physics on the String Worldsheet,” Phys. Rev. Lett. 126 no. 3, (2021) 031601, arXiv:2009.01408 [hep-th].
- I. Bars and J. Schulze, “Folded strings falling into a black hole,” Phys. Rev. D 51 (1995) 1854–1868, arXiv:hep-th/9405156.
- H. J. de Vega and N. G. Sanchez, “String Quantization in Accelerated Frames and Black Holes,” Nucl. Phys. B 299 (1988) 818.
- D. A. Lowe and A. Strominger, “Strings near a Rindler or black hole horizon,” Phys. Rev. D 51 (1995) 1793–1799, arXiv:hep-th/9410215.
- P. K. Townsend, “Black holes: Lecture notes,” arXiv:gr-qc/9707012.
- M. Henneaux and P. Salgado-Rebolledo, “Carroll contractions of Lorentz-invariant theories,” JHEP 11 (2021) 180, arXiv:2109.06708 [hep-th].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.