Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Strings near black holes are Carrollian (2312.14240v2)

Published 21 Dec 2023 in hep-th and gr-qc

Abstract: We demonstrate that strings near the horizon of a Schwarzschild black hole, when viewed by a stationary observer at infinity, probe a string Carroll geometry, where the effective lightspeed is given by the distance from the horizon. We expand the Polyakov action in powers of this lightspeed to find a theory of Carrollian strings. We show that the string shrinks to a point to leading order near the horizon, which follows a null geodesic in a two-dimensional Rindler space. At the next-to-leading order the string oscillates in the embedding fields associated with the near-horizon two-sphere.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1 (1969) 252–276.
  2. R. F. Penna, “Near-horizon Carroll symmetry and black hole Love numbers,” arXiv:1812.05643 [hep-th].
  3. L. Donnay and C. Marteau, “Carrollian Physics at the Black Hole Horizon,” Class. Quant. Grav. 36 no. 16, (2019) 165002, arXiv:1903.09654 [hep-th].
  4. D. Hansen, N. A. Obers, G. Oling, and B. T. Søgaard, “Carroll Expansion of General Relativity,” SciPost Phys. 13 no. 3, (2022) 055, arXiv:2112.12684 [hep-th].
  5. A. Pérez, “Asymptotic symmetries in Carrollian theories of gravity,” JHEP 12 (2021) 173, arXiv:2110.15834 [hep-th].
  6. J. Redondo-Yuste and L. Lehner, “Non-linear black hole dynamics and Carrollian fluids,” JHEP 02 (2023) 240, arXiv:2212.06175 [gr-qc].
  7. F. Ecker, D. Grumiller, J. Hartong, A. Pérez, S. Prohazka, and R. Troncoso, “Carroll black holes,” arXiv:2308.10947 [hep-th].
  8. See for example [65] for a detailed introduction.
  9. R. Andringa, E. Bergshoeff, J. Gomis, and M. de Roo, “’Stringy’ Newton-Cartan Gravity,” Class. Quant. Grav. 29 (2012) 235020, arXiv:1206.5176 [hep-th].
  10. E. A. Bergshoeff, J. Gomis, J. Rosseel, C. Simsek, and Z. Yan, “String Theory and String Newton-Cartan Geometry,” J. Phys. A 53 no. 1, (2020) 014001, arXiv:1907.10668 [hep-th].
  11. A. Bagchi, A. Banerjee, E. Have, J. Hartong, K. Kolekar, and M. Mandlik, “In preparation….”.
  12. N. Sen Gupta, “On an Analogue of the Galileo Group,” Nuovo Cim. 54 (1966) 512 • DOI: 10.1007/BF02740871 .
  13. J. Levy-Leblond, “Une nouvelle limite non-relativiste du group de Poincare,” Ann.Inst.Henri Poincare 3 (1965) 1.
  14. A. Bagchi, “Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories,” Phys.Rev.Lett. 105 (2010) 171601.
  15. G. Barnich, A. Gomberoff, and H. A. Gonzalez, “The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes,” Phys. Rev. D 86 (2012) 024020, arXiv:1204.3288 [gr-qc].
  16. A. Bagchi, S. Detournay, R. Fareghbal, and J. Simon, “Holography of 3D Flat Cosmological Horizons,” Phys.Rev.Lett. 110 no. 14, (2013) 141302, arXiv:1208.4372 [hep-th].
  17. G. Barnich, “Entropy of three-dimensional asymptotically flat cosmological solutions,” JHEP 10 (2012) 095, arXiv:1208.4371 [hep-th].
  18. A. Bagchi and R. Fareghbal, “BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries,” JHEP 1210 (2012) 092, arXiv:1203.5795 [hep-th].
  19. A. Bagchi, R. Basu, D. Grumiller, and M. Riegler, “Entanglement entropy in Galilean conformal field theories and flat holography,” Phys. Rev. Lett. 114 no. 11, (2015) 111602, arXiv:1410.4089 [hep-th].
  20. J. Hartong, “Holographic Reconstruction of 3D Flat Space-Time,” JHEP 10 (2016) 104, arXiv:1511.01387 [hep-th].
  21. A. Bagchi, R. Basu, A. Kakkar, and A. Mehra, “Flat Holography: Aspects of the dual field theory,” JHEP 12 (2016) 147, arXiv:1609.06203 [hep-th].
  22. L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi, “Carrollian Perspective on Celestial Holography,” Phys. Rev. Lett. 129 no. 7, (2022) 071602, arXiv:2202.04702 [hep-th].
  23. A. Bagchi, S. Banerjee, R. Basu, and S. Dutta, “Scattering Amplitudes: Celestial and Carrollian,” Phys. Rev. Lett. 128 no. 24, (2022) 241601, arXiv:2202.08438 [hep-th].
  24. J. Figueroa-O’Farrill, E. Have, S. Prohazka, and J. Salzer, “Carrollian and celestial spaces at infinity,” JHEP 09 (2022) 007, arXiv:2112.03319 [hep-th].
  25. L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi, “Bridging Carrollian and celestial holography,” Phys. Rev. D 107 no. 12, (2023) 126027, arXiv:2212.12553 [hep-th].
  26. A. Bagchi, P. Dhivakar, and S. Dutta, “AdS Witten diagrams to Carrollian correlators,” JHEP 04 (2023) 135, arXiv:2303.07388 [hep-th].
  27. A. Saha, “Carrollian approach to 1 + 3D flat holography,” JHEP 06 (2023) 051, arXiv:2304.02696 [hep-th].
  28. A. Bagchi, P. Dhivakar, and S. Dutta, “Holography in Flat Spacetimes: the case for Carroll,” arXiv:2311.11246 [hep-th].
  29. L. Mason, R. Ruzziconi, and A. Yelleshpur Srikant, “Carrollian Amplitudes and Celestial Symmetries,” arXiv:2312.10138 [hep-th].
  30. J. de Boer, J. Hartong, N. A. Obers, W. Sybesma, and S. Vandoren, “Carroll Symmetry, Dark Energy and Inflation,” Front. in Phys. 10 (2022) 810405, arXiv:2110.02319 [hep-th].
  31. A. Bagchi, K. S. Kolekar, and A. Shukla, “Carrollian Origins of Bjorken Flow,” Phys. Rev. Lett. 130 no. 24, (2023) 241601, arXiv:2302.03053 [hep-th].
  32. A. Bagchi, K. S. Kolekar, T. Mandal, and A. Shukla, “Heavy-ion collisions, Gubser flow, and Carroll hydrodynamics,” arXiv:2310.03167 [hep-th].
  33. L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos, and K. Siampos, “Flat holography and Carrollian fluids,” JHEP 07 (2018) 165, arXiv:1802.06809 [hep-th].
  34. L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos, and K. Siampos, “Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids,” Class. Quant. Grav. 35 no. 16, (2018) 165001, arXiv:1802.05286 [hep-th].
  35. A. Campoleoni, L. Ciambelli, C. Marteau, P. M. Petropoulos, and K. Siampos, “Two-dimensional fluids and their holographic duals,” Nucl. Phys. B 946 (2019) 114692, arXiv:1812.04019 [hep-th].
  36. A. C. Petkou, P. M. Petropoulos, D. R. Betancour, and K. Siampos, “Relativistic fluids, hydrodynamic frames and their Galilean versus Carrollian avatars,” JHEP 09 (2022) 162, arXiv:2205.09142 [hep-th].
  37. L. Freidel and P. Jai-akson, “Carrollian hydrodynamics from symmetries,” Class. Quant. Grav. 40 no. 5, (2023) 055009, arXiv:2209.03328 [hep-th].
  38. L. Freidel and P. Jai-akson, “Carrollian hydrodynamics and symplectic structure on stretched horizons,” arXiv:2211.06415 [gr-qc].
  39. J. de Boer, J. Hartong, N. A. Obers, W. Sybesma, and S. Vandoren, “Carroll stories,” arXiv:2307.06827 [hep-th].
  40. J. Armas and E. Have, “Carrollian fluids and spontaneous breaking of boost symmetry,” arXiv:2308.10594 [hep-th].
  41. L. Bidussi, J. Hartong, E. Have, J. Musaeus, and S. Prohazka, “Fractons, dipole symmetries and curved spacetime,” SciPost Phys. 12 no. 6, (2022) 205, arXiv:2111.03668 [hep-th].
  42. L. Marsot, P. M. Zhang, M. Chernodub, and P. A. Horvathy, “Hall effects in Carroll dynamics,” Phys. Rept. 1028 (2023) 1–60, arXiv:2212.02360 [hep-th].
  43. J. Figueroa-O’Farrill, A. Pérez, and S. Prohazka, “Carroll/fracton particles and their correspondence,” JHEP 06 (2023) 207, arXiv:2305.06730 [hep-th].
  44. J. Figueroa-O’Farrill, A. Pérez, and S. Prohazka, “Quantum Carroll/fracton particles,” arXiv:2307.05674 [hep-th].
  45. A. Bagchi, A. Banerjee, R. Basu, M. Islam, and S. Mondal, “Magic fermions: Carroll and flat bands,” JHEP 03 (2023) 227, arXiv:2211.11640 [hep-th].
  46. J. Isberg, U. Lindström, B. Sundborg, and G. Theodoridis, “Classical and quantized tensionless strings,” Nucl. Phys. B411 (1994) 122–156, arXiv:hep-th/9307108 [hep-th].
  47. A. Bagchi, “Tensionless Strings and Galilean Conformal Algebra,” JHEP 05 (2013) 141, arXiv:1303.0291 [hep-th].
  48. A. Bagchi, S. Chakrabortty, and P. Parekh, “Tensionless Strings from Worldsheet Symmetries,” JHEP 01 (2016) 158, arXiv:1507.04361 [hep-th].
  49. C. D. A. Blair, J. Lahnsteiner, N. A. J. Obers, and Z. Yan, “Unification of Decoupling Limits in String and M-theory,” arXiv:2311.10564 [hep-th].
  50. J. Gomis and Z. Yan, “Worldsheet Formalism for Decoupling Limits in String Theory,” arXiv:2311.10565 [hep-th].
  51. J. Hartong, “Gauging the Carroll Algebra and Ultra-Relativistic Gravity,” JHEP 08 (2015) 069, arXiv:1505.05011 [hep-th].
  52. J. Hartong and E. Have, “Nonrelativistic Expansion of Closed Bosonic Strings,” Phys. Rev. Lett. 128 no. 2, (2022) 021602, arXiv:2107.00023 [hep-th].
  53. J. Hartong and E. Have, “Nonrelativistic approximations of closed bosonic string theory,” JHEP 02 (2023) 153, arXiv:2211.01795 [hep-th].
  54. D. Hansen, J. Hartong, and N. A. Obers, “Action Principle for Newtonian Gravity,” Phys. Rev. Lett. 122 no. 6, (2019) 061106, arXiv:1807.04765 [hep-th].
  55. D. Hansen, J. Hartong, and N. A. Obers, “Non-Relativistic Gravity and its Coupling to Matter,” JHEP 06 (2020) 145, arXiv:2001.10277 [gr-qc].
  56. A. Bagchi, A. Banerjee, S. Chakrabortty, and R. Chatterjee, “A Rindler road to Carrollian worldsheets,” JHEP 04 (2022) 082, arXiv:2111.01172 [hep-th].
  57. C. Duval, G. Gibbons, and P. Horvathy, “Conformal Carroll groups and BMS symmetry,” Class.Quant.Grav. 31 (2014) 092001, arXiv:1402.5894 [gr-qc].
  58. C. Duval, G. Gibbons, and P. Horvathy, “Conformal Carroll groups,” J.Phys. A47 (2014) 335204, arXiv:1403.4213 [hep-th].
  59. A. Bagchi, A. Banerjee, and S. Chakrabortty, “Rindler Physics on the String Worldsheet,” Phys. Rev. Lett. 126 no. 3, (2021) 031601, arXiv:2009.01408 [hep-th].
  60. I. Bars and J. Schulze, “Folded strings falling into a black hole,” Phys. Rev. D 51 (1995) 1854–1868, arXiv:hep-th/9405156.
  61. H. J. de Vega and N. G. Sanchez, “String Quantization in Accelerated Frames and Black Holes,” Nucl. Phys. B 299 (1988) 818.
  62. D. A. Lowe and A. Strominger, “Strings near a Rindler or black hole horizon,” Phys. Rev. D 51 (1995) 1793–1799, arXiv:hep-th/9410215.
  63. P. K. Townsend, “Black holes: Lecture notes,” arXiv:gr-qc/9707012.
  64. M. Henneaux and P. Salgado-Rebolledo, “Carroll contractions of Lorentz-invariant theories,” JHEP 11 (2021) 180, arXiv:2109.06708 [hep-th].
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.