Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum Chromodynamics (2312.14015v1)

Published 21 Dec 2023 in hep-ph

Abstract: This article is part of the "Review of Particle Physics" by the Particle Data Group and reviews the current status of quantum chromodynamics and the strong coupling constant $\alpha_s$. The latest updates as of August 2023 are included.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. J. Campbell, J. Huston, F. Krauss “The Black Book of Quantum Chromodynamics, a Primer for the QCD Era,”Oxford University Press, UK (2017)
  2. https://www.psi.ch/en/nedm/edms-world-wide
  3. F. Gross et al. (2022), [arXiv:2212.11107]
  4. J.-W. Chen et al. (2018), [arXiv:1803.04393]
  5. J. Blümlein et al. (2019), [arXiv:1903.06155]
  6. J. Blümlein (2023), [arXiv:2306.01362]
  7. G. Sterman, in “Snowmass 2021,” (2022), [arXiv:2207.06507]
  8. R. Boussarie et al. (2023), [arXiv:2304.03302]
  9. D. de Florian and L. P. Conte (2023), [arXiv:2305.14144]
  10. V. N. Velizhanin (2015), [arXiv:1508.02857]
  11. X. Chen et al. (2021), [arXiv:2102.07607]
  12. X. Chen et al. (2021), [arXiv:2107.09085]
  13. https://launchpad.net/mg5amcnlo
  14. http://cern.ch/mlm/alpgen/
  15. https://sherpa-team.gitlab.io/
  16. http://cern.ch/helac-phegas/
  17. L. J. Dixon, in “QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, USA, June 4-30, 1995,” 539–584 (1996), [hep-ph/9601359], URL http://www-public.slac.stanford.edu/sciDoc/docMeta.aspx?slacPubNumber=SLAC-PUB-7106
  18. http://gosam.hepforge.org/
  19. https://bitbucket.org/njet/wiki/Home/
  20. https://openloops.hepforge.org/
  21. http://www.desy.de/~znagy/Site/NLOJet++.html
  22. J. Baglio et al. (2011), [arXiv:1107.4038]
  23. http://www-itp.particle.uni-karlsruhe.de/$∼$vbfnloweb
  24. http://lapth.in2p3.fr/PHOX_FAMILY/
  25. G. Bertolotti et al. (2022), [arXiv:2212.11190]
  26. http://theory.fi.infn.it/grazzini/codes.html
  27. https://eerad3.hepforge.org/
  28. http://gate.hep.anl.gov/fpetriello/FEWZ.html
  29. http://theory.fi.infn.it/gazzani/dy.html
  30. http://www.phys.ethz.ch/~pheno/fehipro/
  31. M. Czakon et al. (2021), [arXiv:2105.04436]
  32. M. Czakon et al. (2020), [arXiv:2011.01011]
  33. M. L. Czakon et al. (2021), [arXiv:2102.08267]
  34. S. Badger et al. (2023), [arXiv:2304.06682]
  35. S. Amoroso et al., in “11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches,” (2020), [arXiv:2003.01700]
  36. T. Kluge, K. Rabbertz and M. Wobisch, in “14th International Workshop on Deep Inelastic Scattering (DIS 2006),” 483, Tsukuba, Japan, April 20-24 (2006), [hep-ph/0609285]
  37. D. Britzger et al., in “Proceedings, XX. International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012),” 217, Bonn, Germany, March 26-30 (2012), [arXiv:1208.3641]
  38. http://cute.hepforge.org/
  39. http://projects.hepforge.org/pythia6/
  40. http://home.thep.lu.se/~torbjorn/Pythia.html
  41. http://www.hep.phy.cam.ac.uk/theory/webber/Herwig/
  42. http://projects.hepforge.org/herwig/
  43. http://powhegbox.mib.infn.it/
  44. S. Alioli et al. (2021), [arXiv:2102.08390]
  45. S. Alioli et al. (2022), [arXiv:2212.10489]
  46. J. Mazzitelli et al. (2020), [arXiv:2012.14267]
  47. Z. Nagy and D. E. Soper (2020), [arXiv:2011.04777]
  48. F. Herren et al. (2022), [arXiv:2208.06057]
  49. M. van Beekveld and S. Ferrario Ravasio (2023), [arXiv:2305.08645]
  50. A. Ghosh et al. (2022), [arXiv:2210.15167]
  51. M. Wobisch and T. Wengler, in “Monte Carlo generators for HERA physics. Proceedings, Workshop, Hamburg, Germany, 1998-1999,” 270–279 (1998), [hep-ph/9907280]
  52. F. Caola et al. (2023), [arXiv:2306.07314]
  53. T. Carli, K. Rabbertz and S. Schumann, in T. Schörner-Sadenius, editor, “The Large Hadron Collider: Harvest of Run 1,” 139–194 (2015), [arXiv:1506.03239]
  54. http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM
  55. http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined
  56. T.-J. Hou et al. (2019), [arXiv:1908.11238]
  57. X. Jing et al. (2023), [arXiv:2306.03918]
  58. A. M. Sirunyan et al. (CMS) (2019), [arXiv:1902.04374]
  59. G. Aad et al. (ATLAS) (2019), [arXiv:1907.06728]
  60. (2022), [arXiv:2204.12355]
  61. A. M. Sirunyan et al. (CMS) (2019), [arXiv:1907.08155]
  62. M. Aaboud et al. (ATLAS) (2019), [arXiv:1905.04242]
  63. K. Kröninger, A. B. Meyer and P. Uwer, in T. Schörner-Sadenius, editor, “The Large Hadron Collider: Harvest of Run 1,” 259–300 (2015), [arXiv:1506.02800]
  64. G. Aad et al. (ATLAS) (2023), [arXiv:2306.11379]
  65. D. de Florian et al. (LHC Higgs Cross Section Working Group) (2016), [arXiv:1610.07922]
  66. D. d’Enterria et al., in “Workshop on precision measurements of the QCD coupling constant (alphas-2019) Trento, Trentino, Italy, February 11-15, 2019,” (2019), [arXiv:1907.01435]
  67. D. d’Enterria et al. (2022), [arXiv:2203.08271]
  68. G. P. Salam, in A. Levy, S. Forte and G. Ridolfi, editors, “From My Vast Repertoire …: Guido Altarelli’s Legacy,” 101–121 (2019), [arXiv:1712.05165]
  69. A. Pich et al., in “13th Conference on Quark Confinement and the Hadron Spectrum (Confinement XIII) Maynooth, Ireland, July 31-August 6, 2018,” (2018), [arXiv:1811.11801]
  70. T. Cridge et al. (2021), [arXiv:2106.10289]
  71. M. Czakon et al. (2019), [arXiv:1907.12911]
  72. G. Aad et al. (ATLAS) (2023), [arXiv:2309.12986]
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper clarifies the QCD framework by detailing perturbative methods, renormalization techniques, and lattice computations.
  • The paper validates theoretical predictions through collider experiments that measure jet rates and cross sections.
  • The paper compiles diverse methodologies to precisely determine the strong coupling constant, αₛ, reinforcing the Standard Model's reliability.

Quantum Chromodynamics and its Implications in Particle Physics

The paper on Quantum Chromodynamics (QCD) presents a comprehensive review of the theoretical and experimental advancements in understanding the strong interactions of quarks and gluons. As the SU(3) component of the SU(3)×SU(2)×U(1) Standard Model, QCD is fundamental to our comprehension of matter, describing the complex dynamics that govern the behavior of hadrons. The paper provides a meticulous overview of the theoretical framework, experimental observations, and numerical analyses that underlie the current understanding of QCD.

Theoretical Foundations and Perturbative QCD

Central to QCD is its formulation as a gauge field theory, characterized by the Lagrangian involving quark fields, gluon fields, and the SU(3) color group generators. The paper elucidates on the running coupling and the significance of the renormalization scale in perturbative QCD (pQCD). The renormalization group equations governing the behavior of the QCD coupling constant, αₛ(µ), are pivotal, illustrating phenomena such as asymptotic freedom, where αₛ diminishes at high momentum transfers.

The intricacies of perturbative expansions are detailed, with higher-order corrections demanding sophisticated computational approaches. Techniques like lattice QCD emerge as essential tools in tackling the non-perturbative regime, given their ability to provide ab-initio predictions that complement perturbative methods.

Experimental Studies and QCD Predictions

The article explores the field of experimental validation, discussing collider studies that have been instrumental in probing QCD. The generation of hadronic final states and the precise measurement of jet rates, event shapes, and cross sections with phase-space restrictions are elaborate examples of the interplay between theory and experiment.

A critical examination of the structure of QCD predictions is presented, exploring topics such as fully inclusive cross-sections and processes involving initial state hadrons. These sections underscore the necessity of factorial definitions and the importance of phenomenological models in matching theoretical predictions with experimental data.

Determinations of the Strong Coupling Constant

The determination of αₛ(m_Z), the QCD coupling constant evaluated at the scale of the Z boson mass, remains a cornerstone in testing the precision of the Standard Model. The paper compiles an array of independent studies yielding αₛ values derived from diverse methodologies, such as tau lepton decays, heavy quarkonia, lattice QCD, and various collider processes.

The techniques employed to ascertain αₛ involve intricate balances between experimental precision and theoretical insights. The world average value, compiled from vetted sources, represents an amalgamation of these efforts, epitomizing the collaborative nature of contemporary particle physics research.

Future Developments and Implications

The report highlights potential advancements in QCD research, speculating on future inputs from high-luminosity colliders and advances in lattice computations that could refine our understanding of non-perturbative QCD effects. As computational techniques advance and experimental methodologies become more sophisticated, the prospects for more precise determinations of QCD parameters grow.

Moreover, the paper discusses the implications of QCD studies on the broader field of particle physics. A precise determination of αₛ interconnects with other fundamental measurements, influencing our understanding of electroweak processes and potentially indicating pathways to new physics scenarios beyond the Standard Model.

In conclusion, the paper lays a robust foundation for current and future investigations into the complexities of QCD. Through theoretical rigor, experimental ingenuity, and computational prowess, researchers continue to unravel the intricate tapestry of the strong interaction, thereby advancing our knowledge of the fundamental constituents of matter.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com