Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Efficient Quantum Algorithm for Filtering Product States (2312.13892v3)

Published 21 Dec 2023 in quant-ph

Abstract: We introduce a quantum algorithm to efficiently prepare states with a small energy variance at the target energy. We achieve it by filtering a product state at the given energy with a Lorentzian filter of width $\delta$. Given a local Hamiltonian on $N$ qubits, we construct a parent Hamiltonian whose ground state corresponds to the filtered product state with variable energy variance proportional to $\delta\sqrt{N}$. We prove that the parent Hamiltonian is gapped and its ground state can be efficiently implemented in $\mathrm{poly}(N,1/\delta)$ time via adiabatic evolution. We numerically benchmark the algorithm for a particular non-integrable model and find that the adiabatic evolution time to prepare the filtered state with a width $\delta$ is independent of the system size $N$. Furthermore, the adiabatic evolution can be implemented with circuit depth $\mathcal{O}(N2\delta{-4})$. Our algorithm provides a way to study the finite energy regime of many body systems in quantum simulators by directly preparing a finite energy state, providing access to an approximation of the microcanonical properties at an arbitrary energy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. D. Deutsch, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400, 97 (1985).
  2. S. Lloyd, Science 273, 1073 (1996).
  3. J. I. Cirac and P. Zoller, Physics Today 57, 38 (2004).
  4. T. Cubitt and A. Montanaro, SIAM Journal on Computing 45, 268 (2016).
  5. J. M. Deutsch, Reports on Progress in Physics 81, 082001 (2018).
  6. A. Y. Kitaev, Russian Mathematical Surveys 52, 1191 (1997).
  7. D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162 (1999).
  8. K. Seki and S. Yunoki, Phys. Rev. B 106, 155111 (2022).
  9. Z. Ding and L. Lin, PRX Quantum 4, 020331 (2023).
  10. T. Koma and B. Nachtergaele, “The spectral gap of the ferromagnetic xxz chain,”  (1995), arXiv:cond-mat/9512120 [cond-mat] .
  11. E. H. Lieb, Communications in Mathematical Physics 31, 327 (1973).
  12. U. Schollwöck, Annals of Physics 326, 96–192 (2011).
  13. B. W. Reichardt, in Proceedings of the thirty-sixth annual ACM symposium on Theory of computing (2004) pp. 502–510.
  14. Y. Huang, Nuclear Physics B 966, 115373 (2021).
  15. T. Kato, Journal of the Physical Society of Japan 5, 435 (1950).
  16. M. H. S. Amin, Physical Review Letters 102 (2009), 10.1103/physrevlett.102.220401.
  17. G. H. Low and I. L. Chuang, Physical Review Letters 118, 010501 (2017), 1606.02685 .
  18. G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com