Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Observation of many-body dynamical localization (2312.13880v1)

Published 21 Dec 2023 in quant-ph, cond-mat.quant-gas, and physics.atom-ph

Abstract: The quantum kicked rotor is a paradigmatic model system in quantum physics. As a driven quantum system, it is used to study the transition from the classical to the quantum world and to elucidate the emergence of chaos and diffusion. In contrast to its classical counterpart, it features dynamical localization, specifically Anderson localization in momentum space. The interacting many-body kicked rotor is believed to break localization, as recent experiments suggest. Here, we present evidence for many-body dynamical localization for the Lieb-Liniger version of the many-body quantum kicked rotor. After some initial evolution, the momentum distribution of interacting quantum-degenerate bosonic atoms in one-dimensional geometry, kicked hundreds of times by means of a pulsed sinusoidal potential, stops spreading. We quantify the arrested evolution by analysing the energy and the information entropy of the system as the interaction strength is tuned. In the limiting cases of vanishing and strong interactions, the first-order correlation function exhibits a very different decay behavior. Our results shed light on the boundary between the classical, chaotic world and the realm of quantum physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. G. L. Baker and J. P. Gollub, Chaotic dynamics: an introduction (Cambridge university press, 1996).
  2. F. Haake, Quantum signatures of chaos (Springer, 1991).
  3. H.-J. Stöckmann, Quantum Chaos, an introduction (Cambridge University Press, 1999).
  4. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
  5. D. R. Grempel, R. E. Prange, and S. Fishman, Quantum dynamics of a nonintegrable system, Phys. Rev. A 29, 1639 (1984).
  6. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  7. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  8. D. L. Shepelyansky, Delocalization of quantum chaos by weak nonlinearity, Phys. Rev. Lett. 70, 1787 (1993).
  9. J. D. Bodyfelt, S. Flach, and G. Gligoric, Interactions destroy dynamical localization with strong & weak chaos, Europhysics Letters 96, 30004 (2011).
  10. R. Chicireanu and A. Rançon, Dynamical localization of interacting bosons in the few-body limit, Phys. Rev. A 103, 043314 (2021).
  11. V. Vuatelet and A. Rançon, Effective thermalization of a many-body dynamically localized bose gas, Phys. Rev. A 104, 043302 (2021).
  12. V. Vuatelet and A. Rançon, Dynamical many-body delocalization transition of a Tonks gas in a quasi-periodic driving potential, Quantum 7, 917 (2023).
  13. M. Fava, R. Fazio, and A. Russomanno, Many-body dynamical localization in the kicked bose-hubbard chain, Phys. Rev. B 101, 064302 (2020).
  14. M. Rigol and A. Muramatsu, Ground-state properties of hard-core bosons confined on one-dimensional optical lattices, Phys. Rev. A 72, 013604 (2005).
  15. T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional Tonks-Girardeau gas, Science 305, 1125 (2004).
  16. J. Lin, Divergence measures based on the Shannon entropy, IEEE Transactions on Information Theory 37, 145 (1991).
  17. S. Tan, Generalized virial theorem and pressure relation for a strongly correlated Fermi gas, Annals of Physics 323, 2987 (2008a).
  18. R. M. Nandkishore and S. L. Sondhi, Many-body localization with long-range interactions, Phys. Rev. X 7, 041021 (2017).
  19. M. Troyer, B. Ammon, and E. Heeb, Parallel object oriented Monte Carlo simulations, Lect. Notes Comput. Sci. 1505, 191 (1998).
  20. Data set is available from Zenodo at doi: 10.5281/zenodo.10375982.
  21. H. Buljan, R. Pezer, and T. Gasenzer, Fermi-Bose transformation for the time-dependent Lieb-Liniger gas, Phys. Rev. Lett. 100, 080406 (2008).
  22. W. Xu and M. Rigol, Universal scaling of density and momentum distributions in Lieb-Liniger gases, Phys. Rev. A 92, 063623 (2015).
  23. D. M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67, 279 (1995).
  24. M. Boninsegni, N. Prokof’ev, and B. Svistunov, Worm algorithm for continuous-space path integral Monte Carlo simulations, Phys. Rev. Lett. 96, 070601 (2006a).
  25. M. Boninsegni, N. V. Prokof’ev, and B. V. Svistunov, Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations, Phys. Rev. E 74, 036701 (2006b).
  26. S. Tan, Large momentum part of a strongly correlated Fermi gas, Annals of Physics 323, 2971 (2008b).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com