Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SICs and the Triangle Group $(3,3,3)$ (2312.13400v2)

Published 20 Dec 2023 in quant-ph and math.RT

Abstract: The problem of existence of symmetric informationally-complete positive operator-valued measures (SICs for short) in every dimension is known as Zauner's conjecture and remains open to this day. Most of the known SIC examples are constructed as an orbit of the Weyl-Heisenberg group action. It appears that in these cases SICs are invariant under the so-called canonical order-three unitaries, which define automorphisms of the Weyl-Heisenberg group. In this note, we show that those order-three unitaries appear in projective unitary representations of the triangle group $(3,3,3)$. We give a full description of such representations and show how it can be used to obtain results about the structure of canonical order-three unitaries. In particular, we present an alternative way of proving the fact that any canonical order-three unitary is conjugate to Zauner's unitary if the dimension $d>3$ is prime.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube