Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

Unified Framework for Open Quantum Dynamics with Memory (2312.13233v4)

Published 20 Dec 2023 in quant-ph, cond-mat.stat-mech, and physics.chem-ph

Abstract: Studies of the dynamics of a quantum system coupled to baths are typically performed by utilizing the Nakajima-Zwanzig memory kernel (${\mathcal{K}}$) or the influence functions ($\mathbf{{I}}$), especially when the dynamics exhibit memory effects (i.e., non-Markovian). Despite their significance, the formal connection between the memory kernel and the influence functions has not been explicitly made. We reveal their relation by inspecting the system propagator for a broad class of problems where an $N$-level system is linearly coupled to Gaussian baths (bosonic, fermionic, and spin.) With this connection, we also show how approximate path integral methods can be understood in terms of approximate memory kernels. For a certain class of open quantum system problems, we devised a non-perturbative, diagrammatic approach to construct ${\mathcal{K}}$ from $\mathbf{{I}}$ for (driven) systems interacting with Gaussian baths without the use of any projection-free dynamics inputs required by standard approaches. Lastly, we demonstrate a Hamiltonian learning procedure to extract the bath spectral density from a set of reduced system trajectories obtained experimentally or by numerically exact methods, opening new avenues in quantum sensing and engineering. The insights we provide in this work will significantly advance the understanding of non-Markovian dynamics, and they will be an important stepping stone for theoretical and experimental developments in this area.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube