Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the distance to low-rank matrices in the maximum norm (2312.12905v2)

Published 20 Dec 2023 in math.NA, cs.NA, and math.PR

Abstract: Every sufficiently big matrix with small spectral norm has a nearby low-rank matrix if the distance is measured in the maximum norm (Udell & Townsend, SIAM J Math Data Sci, 2019). We use the Hanson--Wright inequality to improve the estimate of the distance for matrices with incoherent column and row spaces. In numerical experiments with several classes of matrices we study how well the theoretical upper bound describes the approximation errors achieved with the method of alternating projections.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. E. Schmidt “Zur Theorie der linearen und nichtlinearen Integralgleichungen” In Math Ann 63.4 Springer Berlin/Heidelberg, 1907, pp. 433–476 DOI: 10.1007/BF01449770
  2. “The approximation of one matrix by another of lower rank” In Psychometrika 1.3 Springer, 1936, pp. 211–218 DOI: 10.1007/BF02288367
  3. L. Mirsky “Symmetric gauge functions and unitarily invariant norms” In Q J Math 11.1 Oxford University Press, 1960, pp. 50–59 DOI: 10.1093/qmath/11.1.50
  4. S A Goreinov and E E Tyrtyshnikov “The maximal-volume concept in approximation by low-rank matrices” In Contemp Math 280, 2001, pp. 47–51 DOI: 10.1090/conm/280
  5. A I Osinsky and N L Zamarashkin “Pseudo-skeleton approximations with better accuracy estimates” In Linear Algebra Appl 537 Elsevier, 2018, pp. 221–249 DOI: 10.1016/j.laa.2017.09.032
  6. “The approximate rank of a matrix and its algorithmic applications: approximate rank” In Proceedings of the 45th Annual ACM Symposium on Theory of Computing, 2013, pp. 675–684 DOI: 10.1145/2488608.2488694
  7. “Why are big data matrices approximately low rank?” In SIAM J Math Data Sci 1.1 SIAM, 2019, pp. 144–160 DOI: 10.1137/18M1183480
  8. S. Budzinskiy “Quasioptimal alternating projections and their use in low-rank approximation of matrices and tensors”, 2023 arXiv:2308.16097
  9. “Extensions of Lipshitz mapping into Hilbert space” In Contemp Math 26, 1984, pp. 189–206 DOI: 10.1090/conm/026
  10. “An elementary proof of a theorem of Johnson and Lindenstrauss” In Random Struct Algorithms 22.1 Wiley Online Library, 2003, pp. 60–65 DOI: 10.1002/rsa.10073
  11. E J Candès and B Recht “Exact matrix completion via convex optimization” In Found Comput Math 9, 2009, pp. 717–772 DOI: 10.1007/s10208-009-9045-5
  12. D L Hanson and F T Wright “A bound on tail probabilities for quadratic forms in independent random variables” In Ann Math Stat 42.3 JSTOR, 1971, pp. 1079–1083 DOI: 10.1214/aoms/1177693335
  13. “Hanson-Wright inequality and sub-gaussian concentration” In Electron Commun Probab 18 Institute of Mathematical StatisticsBernoulli Society, 2013, pp. 1–9 DOI: 10.1214/ECP.v18-2865
  14. T. Jiang “Maxima of entries of Haar distributed matrices” In Probab Theory Relat Fields 131 Springer, 2005, pp. 121–144 DOI: 10.1007/s00440-004-0376-5
  15. “Low-rank matrix approximation in the infinity norm” In Linear Algebra Appl 581 Elsevier, 2019, pp. 367–382 DOI: 10.1016/j.laa.2019.07.017
  16. Stanislav Morozov, Matvey Smirnov and Nikolai Zamarashkin “On the optimal rank-1 approximation of matrices in the Chebyshev norm” In Linear Algebra Appl 679 Elsevier, 2023, pp. 4–29 DOI: 10.1016/j.laa.2023.09.007
  17. N L Zamarashkin, S V Morozov and E E Tyrtyshnikov “On the best approximation algorithm by low-rank matrices in Chebyshev’s norm” In Comput Math Math Phys 62.5 Springer, 2022, pp. 701–718 DOI: 10.1134/S0965542522050141
  18. “Algorithms for ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT low-rank approximation” In Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 806–814 PMLR PMLR: v70/chierichetti17a
  19. Anastasios Kyrillidis “Simple and practical algorithms for ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-norm low-rank approximation”, 2018 arXiv:1805.09464
  20. Terence Tao “Topics in random matrix theory” isbn: 978-0-8218-7430-1 AMS, 2012
  21. Afonso S Bandeira and Ramon Van Handel “Sharp nonasymptotic bounds on the norm of random matrices with independent entries” In Ann Probab 44.4, 2016, pp. 2479–2506 DOI: 10.1214/15-AOP1025
Citations (5)

Summary

We haven't generated a summary for this paper yet.