Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entrywise tensor-train approximation of large tensors via random embeddings (2403.11768v3)

Published 18 Mar 2024 in math.NA, cs.NA, and math.PR

Abstract: The theory of low-rank tensor-train approximation is well understood when the approximation error is measured in the Frobenius norm. The entrywise maximum norm is equally important but is significantly weaker for large tensors, making the estimates obtained via the Frobenius norm and norm equivalence pessimistic or even meaningless. In this article, we derive a direct estimate of the entrywise approximation error that is applicable in some of these cases. The estimate is given in terms of the higher-order generalization of the matrix factorization norm, and its proof is based on the tensor-structured Hanson--Wright inequality. The theoretical results are accompanied by numerical experiments carried out with the method of alternating projections.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Guifré Vidal “Efficient classical simulation of slightly entangled quantum computations” In Phys Rev Lett 91.14 APS, 2003, pp. 147902 DOI: 10.1103/PhysRevLett.91.147902
  2. “TT-cross approximation for multidimensional arrays” In Linear Algebra Appl 432.1 Elsevier, 2010, pp. 70–88 DOI: 10.1016/j.laa.2009.07.024
  3. Ulrich Schollwöck “The density-matrix renormalization group in the age of matrix product states” In Ann Phys 326.1 Elsevier, 2011, pp. 96–192 DOI: 10.1016/j.aop.2010.09.012
  4. I.V. Oseledets “Tensor-train decomposition” In SIAM J Sci Comput 33.5 SIAM, 2011, pp. 2295–2317 DOI: 10.1137/090752286
  5. Vladimir A Kazeev and Boris N Khoromskij “Low-rank explicit QTT representation of the Laplace operator and its inverse” In SIAM J Matrix Anal Appl 33.3 SIAM, 2012, pp. 742–758 DOI: 10.1137/110844830
  6. Vladimir A Kazeev, Boris N Khoromskij and Eugene E Tyrtyshnikov “Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity” In SIAM J Sci Comput 35.3 SIAM, 2013, pp. A1511–A1536 DOI: 10.1137/110844830
  7. “Stability of low-rank tensor representations and structured multilevel preconditioning for elliptic PDEs” In Found Comput Math 20.5 Springer, 2020, pp. 1175–1236 DOI: 10.1007/s10208-020-09446-z
  8. Warwick De Launey and Jennifer Seberry “The strong Kronecker product” In J Comb Theory A 66.2 Elsevier, 1994, pp. 192–213 DOI: 10.1016/0097-3165(94)90062-0
  9. S.A. Goreinov, E.E. Tyrtyshnikov and N.L. Zamarashkin “A theory of pseudoskeleton approximations” In Linear Algebra Appl 261.1-3 Elsevier, 1997, pp. 1–21 DOI: 10.1016/S0024-3795(96)00301-1
  10. “The maximal-volume concept in approximation by low-rank matrices” In Contemp Math 280, 2001, pp. 47–51 DOI: 10.1090/conm/280
  11. D.V. Savostyanov “Quasioptimality of maximum-volume cross interpolation of tensors” In Linear Algebra Appl 458 Elsevier, 2014, pp. 217–244 DOI: 10.1016/j.laa.2014.06.006
  12. “The approximate rank of a matrix and its algorithmic applications: approximate rank” In Proceedings of the 45th Annual ACM Symposium on Theory of Computing, 2013, pp. 675–684 DOI: 10.1145/2488608.2488694
  13. “Why are big data matrices approximately low rank?” In SIAM J Math Data Sci 1.1 SIAM, 2019, pp. 144–160 DOI: 10.1137/18M1183480
  14. S. Budzinskiy “On the distance to low-rank matrices in the maximum norm” In Linear Algebra Appl 688, 2024, pp. 44–58 DOI: 10.1016/j.laa.2024.02.012
  15. “Tensor train completion: local recovery guarantees via Riemannian optimization” In Numer Linear Algebra Appl 30.6 Wiley Online Library, 2023, pp. e2520 DOI: 10.1002/nla.2520
  16. A. Sultonov, S. Matveev and S. Budzinskiy “Low-rank nonnegative tensor approximation via alternating projections and sketching” In Comput Appl Math 42.2 Springer, 2023, pp. 68 DOI: 10.1007/s40314-023-02211-2
  17. S. Budzinskiy “Quasioptimal alternating projections and their use in low-rank approximation of matrices and tensors”, 2023 arXiv:2308.16097
  18. Frank L Hitchcock “The expression of a tensor or a polyadic as a sum of products” In J Math Phys 6.1-4 Wiley Online Library, 1927, pp. 164–189 DOI: 10.1002/sapm192761164
  19. Tamara G Kolda and Brett W Bader “Tensor decompositions and applications” In SIAM Rev 51.3 SIAM, 2009, pp. 455–500 DOI: 10.1137/07070111x
  20. Stefan Bamberger, Felix Krahmer and Rachel Ward “The Hanson–Wright inequality for random tensors” In Sampl Theory Signal Process Data Anal 20.2 Springer, 2022, pp. 14 DOI: 10.1007/s43670-022-00028-4
  21. “Operator norm inequalities between tensor unfoldings on the partition lattice” In Linear Algebra Appl 520 Elsevier, 2017, pp. 44–66 DOI: 10.1016/j.laa.2017.01.017
  22. Rafał Latała “Estimates of moments and tails of Gaussian chaoses” In Ann Probab 34.6 Institute of Mathematical Statistics, 2006, pp. 2315–2331 DOI: 10.1214/009117906000000421
  23. “Low-rank matrix approximation in the infinity norm” In Linear Algebra Appl 581 Elsevier, 2019, pp. 367–382 DOI: 10.1016/j.laa.2019.07.017
  24. Stanislav Morozov, Matvey Smirnov and Nikolai Zamarashkin “On the optimal rank-1 approximation of matrices in the Chebyshev norm” In Linear Algebra Appl 679 Elsevier, 2023, pp. 4–29 DOI: 10.1016/j.laa.2023.09.007
  25. Roger A. Horn and Charles R. Johnson “Topics in matrix analysis” isbn: 9780521467131 CUP, 1994
Citations (4)

Summary

We haven't generated a summary for this paper yet.