Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Role of Server Momentum in Federated Learning (2312.12670v1)

Published 19 Dec 2023 in cs.LG, cs.AI, and cs.DC

Abstract: Federated Averaging (FedAvg) is known to experience convergence issues when encountering significant clients system heterogeneity and data heterogeneity. Server momentum has been proposed as an effective mitigation. However, existing server momentum works are restrictive in the momentum formulation, do not properly schedule hyperparameters and focus only on system homogeneous settings, which leaves the role of server momentum still an under-explored problem. In this paper, we propose a general framework for server momentum, that (a) covers a large class of momentum schemes that are unexplored in federated learning (FL), (b) enables a popular stagewise hyperparameter scheduler, (c) allows heterogeneous and asynchronous local computing. We provide rigorous convergence analysis for the proposed framework. To our best knowledge, this is the first work that thoroughly analyzes the performances of server momentum with a hyperparameter scheduler and system heterogeneity. Extensive experiments validate the effectiveness of our proposed framework.

Citations (8)

Summary

We haven't generated a summary for this paper yet.