Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coordinating Momenta for Cross-silo Federated Learning (2102.03970v2)

Published 8 Feb 2021 in cs.LG and cs.DC

Abstract: Communication efficiency is crucial for federated learning (FL). Conducting local training steps in clients to reduce the communication frequency between clients and the server is a common method to address this issue. However, this strategy leads to the client drift problem due to \textit{non-i.i.d.} data distributions in different clients which severely deteriorates the performance. In this work, we propose a new method to improve the training performance in cross-silo FL via maintaining double momentum buffers. In our algorithm, one momentum buffer is used to track the server model updating direction, and the other one is adopted to track the local model updating direction. More important, we introduce a novel momentum fusion technique to coordinate the server and local momentum buffers. We also derive the first theoretical convergence analysis involving both the server and local standard momentum SGD. Extensive deep FL experimental results verify that our new approach has a better training performance than the FedAvg and existing standard momentum SGD variants.

Citations (17)

Summary

We haven't generated a summary for this paper yet.