Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Strategies for simulating time evolution of Hamiltonian lattice field theories (2312.11637v2)

Published 18 Dec 2023 in quant-ph, hep-lat, and hep-ph

Abstract: Simulating the time evolution of quantum field theories given some Hamiltonian $H$ requires developing algorithms for implementing the unitary operator e{-iHt}. A variety of techniques exist that accomplish this task, with the most common technique used so far being Trotterization, which is a special case of the application of a product formula. However, other techniques exist that promise better asymptotic scaling in certain parameters of the theory being simulated, the most efficient of which are based on the concept of block encoding. In this work we study the performance of such algorithms in simulating lattice field theories. We derive and compare the asymptotic gate complexities of several commonly used simulation techniques in application to Hamiltonian Lattice Field Theories. Using the scalar \phi4 theory as a test, we also perform numerical studies and compare the gate costs required by Product Formulas and Signal Processing based techniques to simulate time evolution. For the latter, we use the the Linear Combination of Unitaries construction augmented with the Quantum Fourier Transform circuit to switch between the field and momentum eigenbases, which leads to immediate order-of-magnitude improvement in the cost of preparing the block encoding. The paper also includes a pedagogical review of utilized techniques, in particular Product Formulas, LCU, Qubitization, QSP, as well as a technique we call HHKL based on its inventors' names.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Z. Davoudi et al., in Snowmass 2021 (2022) arXiv:2209.10758 [hep-lat] .
  2. C. Morningstar, in 21st Annual Hampton University Graduate Studies Program (HUGS 2006) (2007) arXiv:hep-lat/0702020 .
  3. G. Pan and Z. Y. Meng,   (2022), 10.1016/B978-0-323-90800-9.00095-0, arXiv:2204.08777 [cond-mat.str-el] .
  4. J. B. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
  5. W. A. Bardeen and R. B. Pearson, Physical Review D 14, 547 (1976).
  6. N. Klco and M. J. Savage, Phys. Rev. A 99, 052335 (2019), arXiv:1808.10378 [quant-ph] .
  7. H. C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 1993 (1985a).
  8. H.-C. Pauli and S. J. Brodsky, Physical Review D 32, 2001 (1985b).
  9. R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
  10. C. W. Bauer et al., PRX Quantum 4, 027001 (2023a), arXiv:2204.03381 [quant-ph] .
  11. S. Lloyd, Science 273, 1073 (1996).
  12. C. Zalka, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 313 (1998).
  13. S. Wiesner,   (1996), arXiv:quant-ph/9603028 .
  14. M. Suzuki, Communications in Mathematical Physics 51, 183 (1976).
  15. N. Hatano and M. Suzuki, Lect. Notes Phys. 679, 37 (2005), arXiv:math-ph/0506007 .
  16. M. Suzuki, J. Math. Phys. 32, 400 (1991).
  17. A. M. Childs and Y. Su, Physical review letters 123, 050503 (2019).
  18. A. M. Childs and N. Wiebe, Quant. Inf. Comput. 12, 0901 (2012), arXiv:1202.5822 [quant-ph] .
  19. B. Toloui and P. J. Love,   (2013), arXiv:1312.2579 [quant-ph] .
  20. M. L. Rhodes, M. Kreshchuk,  and S. Pathak, “Efficient constructions of block-encoding oracles for simulating lattice gauge theory,” In preparation.
  21. C. W. Bauer and D. M. Grabowska, Phys. Rev. D 107, L031503 (2023), arXiv:2111.08015 [hep-ph] .
  22. G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501 (2017), arXiv:1606.02685 [quant-ph] .
  23. G. H. Low and I. L. Chuang, Quantum 3, 163 (2019), arXiv:1610.06546 [quant-ph] .
  24. D. Camps and R. Van Beeumen, in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, 2022) pp. 104–113.
  25. L. Lin,   (2022), arXiv:2201.08309 [quant-ph] .
  26. D. Motlagh and N. Wiebe,   (2023), arXiv:2308.01501 [quant-ph] .
  27. E. H. Lieb and D. W. Robinson, Commun. Math. Phys. 28, 251 (1972).
  28. “Qsppack,” https://github.com/qsppack/QSPPACK.
  29. M. Plesch and v. Brukner, Phys. Rev. A 83, 032302 (2011).
  30. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2012).
  31. G. H. Low and N. Wiebe,   (2018), arXiv:1805.00675 [quant-ph] .
  32. L. Lin and Y. Tong, PRX Quantum 3, 010318 (2022), arXiv:2102.11340 [quant-ph] .
  33. S. B. Bravyi and A. Y. Kitaev, Annals Phys. 298, 210 (2002), arXiv:quant-ph/0003137 .
  34. F. Verstraete and J. I. Cirac, J. Stat. Mech. 0509, P09012 (2005), arXiv:cond-mat/0508353 .
  35. K. Setia and J. D. Whitfield, J. Chem. Phys. 148, 164104 (2018).
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.