Anisotropic refinable functions and the tile B-splines (2312.11182v1)
Abstract: The regularity of refinable functions has been analysed in an extensive literature and is well-understood in two cases: 1) univariate 2) multivariate with an isotropic dilation matrix. The general (non-isotropic) case offered a great resistance. It was done only recently by developing the matrix method. In this paper we make the next step and extend the Littlewood-Paley type method, which is very efficient in the aforementioned special cases, to general equations with arbitrary dilation matrices. This gives formulas for the higher order regularity in $W_2k(\mathbb{R}n)$ by means of the Perron eigenvalue of a finite-dimensional linear operator on a special cone. Applying those results to recently introduced tile B-splines, we prove that they can have a higher smoothness than the classical ones of the same order. Moreover, the two-digit tile B-splines have the minimal support of the mask among all refinable functions of the same order of approximation. This proves, in particular, the lowest algorithmic complexity of the corresponding subdivision schemes. Examples and numerical results are provided.
- Self-similar anisotropic texture analysis: the hyperbolic wavelet transform contribution, IEEE Trans. Image Process. 22 (2013) 4353 -– 4363
- M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no 781.
- C. Bandt, G. Gelbrich, Classiffication of self-affine lattice tilings, J. London Math. Soc. 50 (1994), no. 3, 581 – 593.
- C. A. Cabrelli, C. Heil and U. M. Molter, Accuracy of lattice translates of several multidimensional refinable functions, J. Approx. Theory, 95 (1998), 5 – 52
- C. A. Cabrelli, C. Heil and U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Memoirs Amer. Math. Soc., 170 (2004), no. 807
- Stationary subdivision, Memoirs Amer. Math. Soc. 93 (1991), no. 453
- M. Charina, Vector multivariate subdivision schemes: Comparison of spectral methods for their regularity analysis, Appl. Comput. Harmon. Anal. 32 (2012) 86 -– 108
- Multigrid methods: Grid transfer operators and subdivision schemes, Linear Alg. Appl., 520 (2017), 151 – 190
- Anisotropic bivariate subdivision with applications to multigrid, Applied Numerical Mathematics 135 (2019), 333 – 366
- M. Charina, Th. Mejstrik, Multiple multivariate subdivision schemes: Matrix and operator approaches, J. Comput. Appl. Math., 349 (2019), 279 – 291
- M. Charina, V.Yu. Protasov, Regularity of anisotropic refinable functions, Appl. Comput. Harmon. Anal., 47 (2019), no. 3, 795 – 821
- Convergence of vector subdivision schemes in Sobolev spaces, Appl. Comp. Harm. Anal., 12 (2002), 128 – 149
- A. Cohen, I. Daubechies, A new technique to estimate the regularity of refinable functions, Revista Mathematica Iberoamericana, 12 (1996), 527 – 591
- A. Cohen, K. Gröchenig and L. Villemoes, Regularity of multivariate refinable functions, Constr. Approx., 15 (1999), 241 –- 255
- I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, Philadelphia, 1992
- Generalized refinement equations and subdivision processes, J. Approx. Theory 80 (1995), 272 –- 297
- G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 5 (1989), 49 -– 68
- T. Eirola, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal., 23 (1992), 1015 – 1030
- D.-J. Feng and N. Sidorov, Growth rate for beta-expansions, Monatsh. Math. 162 (2011), 41 – 60
- K. Gröchenig and A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl., 2 (1994), 131 – 170
- N. Guglielmi, V.Yu. Protasov, Exact computation of joint spectral characteristics of matrices, Found. Comput. Math., 13 (2013), 37 – 97
- N. Guglielmi, V.Yu. Protasov, Invariant polytopes of sets of matrices with applications to regularity of wavelets and subdivisions, SIAM J. Matrix Anal. Appl., 37 (2016), 18 – 52
- B. Han, R-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal., 29 (1998), 1177 – 1199
- B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matr. Anal. Appl., 24 (2003), 693 – 714
- B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix, Advances Comput. Math., 24 (2006), 375 – 403
- R.-Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc., 351 (1999), 4089 – 4112
- R.-Q. Jia, S.R. Zhang, Spectral properties of the transition operator associated with multivariate refinement equation, Lin. Alg. Appl. 292 (1999), 155 – 178
- R. Kapica and J. Morawiec, Refinement type equations and Grincevicjus series, J. Math. Anal. Appl. 350 (2009), 393 – 400
- M.G. Kreĭn, M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. 1950 (26)
- Multivariate wavelets frames, Industrial and Applied Mathematics, (2017)
- N. Kruglyak, The K-functional and Calder´on-Zygmund type decompositions. Interpolation theory and applications, 183 -– 194, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007.
- J. Lagarias and Y. Wang, Integral self-affine tiles in ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. II. Lattice tilings, J. Fourier Anal. Appl. 3 (1997), 83 – 102.
- On some sharp regularity estimations of L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-scaling functions, SIAM J. Math. Anal. 27 (1996), 835 – 864.
- T. Mejstrik, Improved Invariant Polytope Algorithm and Applications, ACM Trans. on Mathematical Software, 46 (2020), no 3, 3408891.
- M. Milman, Notes on limits of Sobolev spaces and the continuity of interpolation scales, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3425 -– 3442.
- C. Möller, U. Reif, A tree-based approach to joint spectral radius determination, Lin. Alg. Appl., 563 (2014), 154 – 170
- Wavelets theory, AMS, Translations Mathematical Monographs, 239 (2011)
- J. Peter, U. Reif, Subdivision Surfaces, Geometry and Computing, Springer-Verlag, Berlin, 2008
- V. Yu. Protasov, The generalized spectral radius. A geometric approach, Izvestiya Math., 61 (1997), 995 – 103.
- V. Yu. Protasov, Refinement equations with nonnegative coefficients, J. Fourier Anal. Appl., 6 (2000), 55 –- 78.
- V.Yu. Protasov, Fractal curves and wavelets, Izvestiya Math. 70 (2006), no 5, 975 -– 1013.
- V. Yu. Protasov, The Euler binary partition function and subdivision schemes, Math. Comput., 86 (2017), no. 305, 1499 – 1524.
- V.Yu. Protasov, Surface dimension, tiles, and synchronizing automata, SIAM J. Matrix Anal. Appl., 52 (2020), no. 4, 3463–3486.
- A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx., 5 (1989), 297 – 308.
- A. Ron, Z. Shen, The Sobolev regularity of refinable functions, J. Approx. Theory, 106 (2000), 185 – 225
- Normals of the butterfly subdivision scheme surfaces and their applications, Special issue: computational methods in computer graphics. J. Comput. Appl. Math., 102 (1999), 157 – 180
- M.A. Skopina and Yu.A. Farkov, Walsh-Type Functions on M𝑀Mitalic_M-positive sets in ℝdsuperscriptℝ𝑑{\mathbb{R}}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT, Math. Notes, 111 (2022), 643 -– 647
- R.M. Trigub and E.S. Belinsky, Autore. Fourier Analysis and Approximation of Functions, Springer Verlag, Dordrecht (2010).
- L. Villemoes, Wavelet analysis of refinement equations, SIAM J. Math. Anal., 25 (1994), 1433 -– 1466.
- Y. Wang and Z. Xub, The regularity of refinable functions, Appl. Comput. Harmon. Anal. 34 (2013), 142 –- 147
- T.I. Zaitseva, Multivariate tile B-splines, Izv. RAN. Ser. Mat., 87:2 (2023), 89 -– 132
- T. Zaitseva, Haar wavelets and subdivision algorithms on the plane, Advances in Systems Science and Applications 17 (2017), no. 3, 49 – 57.
- T.I. Zaitseva, V.Yu. Protasov, Self-similar 2-attractor and tiles, Sbornik: Mathematics, 213 (2022), no 6, 794 – 830