Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anisotropic refinable functions and the tile B-splines (2312.11182v1)

Published 18 Dec 2023 in math.FA, cs.NA, and math.NA

Abstract: The regularity of refinable functions has been analysed in an extensive literature and is well-understood in two cases: 1) univariate 2) multivariate with an isotropic dilation matrix. The general (non-isotropic) case offered a great resistance. It was done only recently by developing the matrix method. In this paper we make the next step and extend the Littlewood-Paley type method, which is very efficient in the aforementioned special cases, to general equations with arbitrary dilation matrices. This gives formulas for the higher order regularity in $W_2k(\mathbb{R}n)$ by means of the Perron eigenvalue of a finite-dimensional linear operator on a special cone. Applying those results to recently introduced tile B-splines, we prove that they can have a higher smoothness than the classical ones of the same order. Moreover, the two-digit tile B-splines have the minimal support of the mask among all refinable functions of the same order of approximation. This proves, in particular, the lowest algorithmic complexity of the corresponding subdivision schemes. Examples and numerical results are provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Self-similar anisotropic texture analysis: the hyperbolic wavelet transform contribution, IEEE Trans. Image Process. 22 (2013) 4353 -– 4363
  2. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no 781.
  3. C. Bandt, G. Gelbrich, Classiffication of self-affine lattice tilings, J. London Math. Soc. 50 (1994), no. 3, 581 – 593.
  4. C. A. Cabrelli, C. Heil and U. M. Molter, Accuracy of lattice translates of several multidimensional refinable functions, J. Approx. Theory, 95 (1998), 5 – 52
  5. C. A. Cabrelli, C. Heil and U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Memoirs Amer. Math. Soc., 170 (2004), no. 807
  6. Stationary subdivision, Memoirs Amer. Math. Soc. 93 (1991), no. 453
  7. M. Charina, Vector multivariate subdivision schemes: Comparison of spectral methods for their regularity analysis, Appl. Comput. Harmon. Anal. 32 (2012) 86 -– 108
  8. Multigrid methods: Grid transfer operators and subdivision schemes, Linear Alg. Appl., 520 (2017), 151 – 190
  9. Anisotropic bivariate subdivision with applications to multigrid, Applied Numerical Mathematics 135 (2019), 333 – 366
  10. M. Charina, Th. Mejstrik, Multiple multivariate subdivision schemes: Matrix and operator approaches, J. Comput. Appl. Math., 349 (2019), 279 – 291
  11. M. Charina, V.Yu. Protasov, Regularity of anisotropic refinable functions, Appl. Comput. Harmon. Anal., 47 (2019), no. 3, 795 – 821
  12. Convergence of vector subdivision schemes in Sobolev spaces, Appl. Comp. Harm. Anal., 12 (2002), 128 – 149
  13. A. Cohen, I. Daubechies, A new technique to estimate the regularity of refinable functions, Revista Mathematica Iberoamericana, 12 (1996), 527 – 591
  14. A. Cohen, K. Gröchenig and L. Villemoes, Regularity of multivariate refinable functions, Constr. Approx., 15 (1999), 241 –- 255
  15. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, Philadelphia, 1992
  16. Generalized refinement equations and subdivision processes, J. Approx. Theory 80 (1995), 272 –- 297
  17. G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 5 (1989), 49 -– 68
  18. T. Eirola, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal., 23 (1992), 1015 – 1030
  19. D.-J. Feng and N. Sidorov, Growth rate for beta-expansions, Monatsh. Math. 162 (2011), 41 – 60
  20. K. Gröchenig and A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl., 2 (1994), 131 – 170
  21. N. Guglielmi, V.Yu. Protasov, Exact computation of joint spectral characteristics of matrices, Found. Comput. Math., 13 (2013), 37 – 97
  22. N. Guglielmi, V.Yu. Protasov, Invariant polytopes of sets of matrices with applications to regularity of wavelets and subdivisions, SIAM J. Matrix Anal. Appl., 37 (2016), 18 – 52
  23. B. Han, R-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal., 29 (1998), 1177 – 1199
  24. B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matr. Anal. Appl., 24 (2003), 693 – 714
  25. B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix, Advances Comput. Math., 24 (2006), 375 – 403
  26. R.-Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc., 351 (1999), 4089 – 4112
  27. R.-Q. Jia, S.R. Zhang, Spectral properties of the transition operator associated with multivariate refinement equation, Lin. Alg. Appl. 292 (1999), 155 – 178
  28. R. Kapica and J. Morawiec, Refinement type equations and Grincevicjus series, J. Math. Anal. Appl. 350 (2009), 393 – 400
  29. M.G. Kreĭn, M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. 1950 (26)
  30. Multivariate wavelets frames, Industrial and Applied Mathematics, (2017)
  31. N. Kruglyak, The K-functional and Calder´on-Zygmund type decompositions. Interpolation theory and applications, 183 -– 194, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007.
  32. J. Lagarias and Y. Wang, Integral self-affine tiles in ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. II. Lattice tilings, J. Fourier Anal. Appl. 3 (1997), 83 – 102.
  33. On some sharp regularity estimations of L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-scaling functions, SIAM J. Math. Anal. 27 (1996), 835 – 864.
  34. T. Mejstrik, Improved Invariant Polytope Algorithm and Applications, ACM Trans. on Mathematical Software, 46 (2020), no 3, 3408891.
  35. M. Milman, Notes on limits of Sobolev spaces and the continuity of interpolation scales, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3425 -– 3442.
  36. C. Möller, U. Reif, A tree-based approach to joint spectral radius determination, Lin. Alg. Appl., 563 (2014), 154 – 170
  37. Wavelets theory, AMS, Translations Mathematical Monographs, 239 (2011)
  38. J. Peter, U. Reif, Subdivision Surfaces, Geometry and Computing, Springer-Verlag, Berlin, 2008
  39. V. Yu. Protasov, The generalized spectral radius. A geometric approach, Izvestiya Math., 61 (1997), 995 – 103.
  40. V. Yu. Protasov, Refinement equations with nonnegative coefficients, J. Fourier Anal. Appl., 6 (2000), 55 –- 78.
  41. V.Yu. Protasov, Fractal curves and wavelets, Izvestiya Math. 70 (2006), no 5, 975 -– 1013.
  42. V. Yu. Protasov, The Euler binary partition function and subdivision schemes, Math. Comput., 86 (2017), no. 305, 1499 – 1524.
  43. V.Yu. Protasov, Surface dimension, tiles, and synchronizing automata, SIAM J. Matrix Anal. Appl., 52 (2020), no. 4, 3463–3486.
  44. A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx., 5 (1989), 297 – 308.
  45. A. Ron, Z. Shen, The Sobolev regularity of refinable functions, J. Approx. Theory, 106 (2000), 185 – 225
  46. Normals of the butterfly subdivision scheme surfaces and their applications, Special issue: computational methods in computer graphics. J. Comput. Appl. Math., 102 (1999), 157 – 180
  47. M.A. Skopina and Yu.A. Farkov, Walsh-Type Functions on M𝑀Mitalic_M-positive sets in ℝdsuperscriptℝ𝑑{\mathbb{R}}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT, Math. Notes, 111 (2022), 643 -– 647
  48. R.M. Trigub and E.S. Belinsky, Autore. Fourier Analysis and Approximation of Functions, Springer Verlag, Dordrecht (2010).
  49. L. Villemoes, Wavelet analysis of refinement equations, SIAM J. Math. Anal., 25 (1994), 1433 -– 1466.
  50. Y. Wang and Z. Xub, The regularity of refinable functions, Appl. Comput. Harmon. Anal. 34 (2013), 142 –- 147
  51. T.I. Zaitseva, Multivariate tile B-splines, Izv. RAN. Ser. Mat., 87:2 (2023), 89 -– 132
  52. T. Zaitseva, Haar wavelets and subdivision algorithms on the plane, Advances in Systems Science and Applications 17 (2017), no. 3, 49 – 57.
  53. T.I. Zaitseva, V.Yu. Protasov, Self-similar 2-attractor and tiles, Sbornik: Mathematics, 213 (2022), no 6, 794 – 830

Summary

We haven't generated a summary for this paper yet.