2000 character limit reached
A Matricial Algorithm for Polynomial Refinement (1110.6061v2)
Published 27 Oct 2011 in cs.IT and math.IT
Abstract: In order to have a multiresolution analysis, the scaling function must be refinable. That is, it must be the linear combination of 2-dilation, $\mathbb{Z}$-translates of itself. Refinable functions used in connection with wavelets are typically compactly supported. In 2002, David Larson posed the question in his REU site, "Are all polynomials (of a single variable) finitely refinable?" That summer the author proved that the answer indeed was true using basic linear algebra. The result was presented in a number of talks but had not been typed up until now. The purpose of this short note is to record that particular proof.