Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Analysis of composition on the original scale of measurement (2312.10548v1)

Published 16 Dec 2023 in stat.ME

Abstract: In current applied research the most-used route to an analysis of composition is through log-ratios -- that is, contrasts among log-transformed measurements. Here we argue instead for a more direct approach, using a statistical model for the arithmetic mean on the original scale of measurement. Central to the approach is a general variance-covariance function, derived by assuming multiplicative measurement error. Quasi-likelihood analysis of logit models for composition is then a general alternative to the use of multivariate linear models for log-ratio transformed measurements, and it has important advantages. These include robustness to secondary aspects of model specification, stability when there are zero-valued or near-zero measurements in the data, and more direct interpretation. The usual efficiency property of quasi-likelihood estimation applies even when the error covariance matrix is unspecified. We also indicate how the derived variance-covariance function can be used, instead of the variance-covariance matrix of log-ratios, with more general multivariate methods for the analysis of composition. A specific feature is that the notion of `null correlation' -- for compositional measurements on their original scale -- emerges naturally.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com