Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Quantum Generative Adversarial Networks: Bridging Classical and Quantum Realms (2312.09939v2)

Published 15 Dec 2023 in quant-ph, cs.ET, and cs.LG

Abstract: In this pioneering research paper, we present a groundbreaking exploration into the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs). Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes. Drawing inspiration from the inherent capabilities of quantum bits (qubits), we delve into the incorporation of quantum data representation methodologies within the GAN framework. By capitalizing on the unique quantum features, we aim to accelerate the training process of GANs, offering a fresh perspective on the optimization of generative models. Our investigation deals with theoretical considerations and evaluates the potential quantum advantages that may manifest in terms of training efficiency and generative quality. We confront the challenges inherent in the quantum-classical amalgamation, addressing issues related to quantum hardware constraints, error correction mechanisms, and scalability considerations. This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems to expedite the training of Generative Adversarial Networks. Through our comprehensive examination of the interface between classical and quantum realms, we aim to uncover transformative insights that will propel the field forward, fostering innovation and advancing the frontier of quantum machine learning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. G. Agliardi and E. Prati, “Optimal tuning of quantum generative adversarial networks for multivariate distribution loading,” Quantum Reports, vol. 4, no. 1, pp. 75–105, 2022.
  2. R. Koch and J. L. Lado, “Designing quantum many-body matter with conditional generative adversarial networks,” Physical Review Research, vol. 4, no. 3, p. 033223, 2022.
  3. N.-R. Zhou, T.-F. Zhang, X.-W. Xie, and J.-Y. Wu, “Hybrid quantum–classical generative adversarial networks for image generation via learning discrete distribution,” Signal Processing: Image Communication, vol. 110, p. 116891, 2023.
  4. K. Borras, S. Y. Chang, L. Funcke, M. Grossi, T. Hartung, K. Jansen, D. Kruecker, S. Kühn, F. Rehm, C. Tüysüz, et al., “Impact of quantum noise on the training of quantum generative adversarial networks,” in Journal of Physics: Conference Series, vol. 2438, p. 012093, IOP Publishing, 2023.
  5. M. Y. Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyanskyi, and H. Neven, “Entangling quantum generative adversarial networks,” Physical Review Letters, vol. 128, no. 22, p. 220505, 2022.
  6. C. Zoufal, A. Lucchi, and S. Woerner, “Quantum generative adversarial networks for learning and loading random distributions,” npj Quantum Information, vol. 5, no. 1, p. 103, 2019.
  7. P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,” Physical Review A, vol. 98, no. 1, p. 012324, 2018.
  8. H. Situ, Z. He, Y. Wang, L. Li, and S. Zheng, “Quantum generative adversarial network for generating discrete distribution,” Information Sciences, vol. 538, pp. 193–208, 2020.
  9. H.-L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang, J. Lin, Y. Xu, et al., “Experimental quantum generative adversarial networks for image generation,” Physical Review Applied, vol. 16, no. 2, p. 024051, 2021.
  10. J. Pan, “Stabilizing quantum gans,” Nature Computational Science, vol. 2, no. 6, pp. 351–351, 2022.
  11. K. Gili, M. Mauri, and A. Perdomo-Ortiz, “Generalization metrics for practical quantum advantage in generative models,” 2023.
  12. S. L. Tsang, M. T. West, S. M. Erfani, and M. Usman, “Hybrid quantum-classical generative adversarial network for high resolution image generation,” IEEE Transactions on Quantum Engineering, 2023.
  13. Y. Huang, H. Lei, X. Li, and G. Yang, “Quantum maximum mean discrepancy gan,” Neurocomputing, vol. 454, pp. 88–100, 2021.
  14. B. T. Kiani, G. De Palma, M. Marvian, Z.-W. Liu, and S. Lloyd, “Learning quantum data with the quantum earth mover’s distance,” Quantum Science and Technology, vol. 7, no. 4, p. 045002, 2022.
  15. T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4401–4410, 2019.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.