Induced motions on Carroll geometries (2312.09924v1)
Abstract: In this article, we consider some Carrollian dynamical systems as effective models on null hypersurfaces in a Lorentzian spacetime. We show that we can realize Carroll models from more usual relativistic'' theories. In particular, we show how ambient null geodesics imply the classical
no Carroll motion'' and, more interestingly, we find that the ambient model of chiral fermions implies Hall motion on null hypersurfaces, in agreement with previous intrinsic Carroll results. We also show how Wigner-Souriau translations imply (apparent) Carroll motion, and how ambient particles with a non vanishing gyromagnetic ratio cannot have a Carrollian description.
- J.-M. Lévy-Leblond, “Une nouvelle limite non-relativiste du groupe de Poincaré”, Annales de l’I.H.P. Physique théorique 3, p. 1 (1965), http://www.numdam.org/item/AIHPA_1965__3_1_1_0.
- V. D. Sen Gupta, “On an Analogue of the Galileo Group”, Il Nuovo Cimento 54, p. 512, (1966).
- H. Bacry, J.-M. Lévy-Leblond, “Possible kinematics”, J. Math. Phys. 9, p. 1605, (1968).
- J. Hartong, “Gauging the Carroll Algebra and Ultra-Relativistic Gravity”, JHEP 08, p. 069, (2015), arXiv: 1505.05011.
- E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel, T. ter Veldhuis, “Carroll versus Galilei Gravity”, JHEP 03, p. 165, (2017), arXiv: 1701.06156.
- D. Hansen, N. A. Obers, G. Oling, B. T. Søgaard, “Carroll Expansion of General Relativity”, SciPost Phys. 13, p. 055, (2022), arXiv: 2112.12684.
- E. Bergshoeff, J. Gomis, G. Longhi, “Dynamics of Carroll Particles”, Class. Quant. Grav. 31, p. 205009, (2014), arXiv: 1405.2264.
- J. de Boer, J. Hartong, N. A. Obers, W. Sybesma, S. Vandoren, “Carroll Symmetry, Dark Energy and Inflation”, Front. in Phys. 10, p. 810405, (2022), arXiv: 2110.02319.
- L. Marsot, P. M. Zhang, M. Chernodub, P. A. Horvathy, “Hall effects in Carroll dynamics”, Phys. Rept. 1028, p. 1, (2023), arXiv: 2212.02360.
- J. Figueroa-O’Farrill, A. Pérez, S. Prohazka, “Carroll/fracton particles and their correspondence”, JHEP 06, p. 207, (2023), arXiv: 2305.06730.
- L. Ciambelli, D. Grumiller, “Carroll geodesics”, arXiv: 2311.04112.
- R. F. Penna, “Near-horizon Carroll symmetry and black hole Love numbers”, arXiv: 1812.05643.
- L. Donnay, C. Marteau, “Carrollian Physics at the Black Hole Horizon”, Class. Quant. Grav. 36, p. 165002, (2019), arXiv: 1903.09654.
- L. Freidel, P. Jai-akson, “Carrollian hydrodynamics and symplectic structure on stretched horizons”, arXiv: 2211.06415.
- L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos, K. Siampos, “Flat holography and Carrollian fluids”, JHEP 07, p. 165, (2018), arXiv: 1802.06809.
- L. Donnay, A. Fiorucci, Y. Herfray, R. Ruzziconi, “Carrollian Perspective on Celestial Holography”, Phys. Rev. Lett. 129, p. 071602, (2022), arXiv: 2202.04702.
- M. Henneaux, P. Salgado-Rebolledo, “Carroll contractions of Lorentz-invariant theories”, JHEP 11, p. 180, (2021), arXiv: 2109.06708.
- E. A. Bergshoeff, A. Campoleoni, A. Fontanella, L. Mele, J. Rosseel, “Carroll Fermions”, arXiv: 2312.00745.
- L. Marsot, “Planar Carrollean dynamics, and the Carroll quantum equation”, J. Geom. Phys. 179, p. 104574, (2022), arXiv: 2110.08489.
- C. Duval, G. W. Gibbons, P. A. Horváthy, “Conformal Carroll groups and BMS symmetry”, Classical Quantum Gravity 31, p. 092001, (2014), arXiv: 1402.5894.
- Y. Herfray, “Carrollian manifolds and null infinity: a view from Cartan geometry”, Class. Quant. Grav. 39, p. 215005, (2022), arXiv: 2112.09048.
- C. Duval, G. W. Gibbons, P. A. Horváthy, P. M. Zhang, “Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time”, Class. Quant. Grav. 31, p. 085016, (2014), arXiv: 1402.0657.
- K. Morand, “Embedding Galilean and Carrollian geometries I. Gravitational waves”, J. Math. Phys. 61, p. 082502, (2020), arXiv: 1811.12681.
- L. Ciambelli, R. G. Leigh, C. Marteau, P. M. Petropoulos, “Carroll Structures, Null Geometry and Conformal Isometries”, Phys. Rev. D 100, p. 046010, (2019), arXiv: 1905.02221.
- J. de Boer, J. Hartong, N. A. Obers, W. Sybesma, S. Vandoren, “Carroll stories”, JHEP 09, p. 148, (2023), arXiv: 2307.06827.
- A. Bagchi, K. S. Kolekar, A. Shukla, “Carrollian Origins of Bjorken Flow”, Phys. Rev. Lett. 130, p. 241601, (2023), arXiv: 2302.03053.
- M. Henneaux, “Geometry of Zero Signature Space-times”, Bull. Soc. Math. Belg. 31, p. 47 (1979).
- L. Venema, B. Verberck, I. Georgescu, G. Prando, E. Couderc, S. Milana, M. Maragkou, L. Persechini, G. Pacchioni, L. Fleet, “The quasiparticle zoo”, Nature Physics 12, p. 1085, (2016).
- D. T. Son, N. Yamamoto, “Berry Curvature, Triangle Anomalies, and the Chiral Magnetic Effect in Fermi Liquids”, Phys. Rev. Lett. 109, p. 181602, (2012), arXiv: 1203.2697.
- M. A. Stephanov, Y. Yin, “Chiral Kinetic Theory”, Phys. Rev. Lett. 109, p. 162001, (2012), arXiv: 1207.0747.
- P. Zhang, P. A. Horváthy, “Anomalous Hall Effect for semiclassical chiral fermions”, Phys. Lett. A 379, p. 507, (2014), arXiv: 1409.4225.
- C. Duval, P. A. Horváthy, “Chiral fermions as classical massless spinning particles”, Phys. Rev. D 91, p. 045013, (2015), arXiv: 1406.0718.
- J.-M. Souriau, Structure des systèmes dynamiques. Dunod, Paris, 1970, doi: 10.1007/978-1-4612-0281-3. Translation to English: Structure of Dynamical Systems. A Symplectic View of Physics. (Birkhäuser, Basel, 1997).
- W. Tulczyjew, “Motion of multipole particles in general relativity theory”, Acta Phys. Pol. 18, p. 393 (1959).
- M. Mathisson, “Neue Mechanik materieller Systeme”, Acta Phys. Pol. 6, p. 163 (1937), http://delibra.bg.polsl.pl/dlibra/publication/39562/edition/34807/content.
- A. Papapetrou, “Spinning Test-Particles in General Relativity. I”, Proc. R. Soc. A 209, p. 248, (1951).
- W. G. Dixon, “Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum”, Proc. R. Soc. A 314, p. 499, (1970).
- J.-M. Souriau, “Modèle de particule à spin dans le champ électromagnétique et gravitationnel”, Ann. Inst. Henri Poincaré A 20, p. 315 (1974), http://www.numdam.org/item/AIHPA_1974__20_4_315_0.
- A. I. Harte, M. A. Oancea, “Spin Hall effects and the localization of massless spinning particles”, Phys. Rev. D 105, p. 104061, (2022), arXiv: 2203.01753.
- P. Saturnini, Un modèle de particules à spin de masse nulle dans le champ de gravitation. PhD thesis, Université de Provence (1976). HAL: tel-01344863.
- M. A. Oancea, A. Kumar, “Semiclassical analysis of Dirac fields on curved spacetime”, Phys. Rev. D 107, p. 044029, (2023), arXiv: 2212.04414.
- M. Stone, V. Dwivedi, T. Zhou, “Berry Phase, Lorentz Covariance, and Anomalous Velocity for Dirac and Weyl Particles”, Phys. Rev. D 91, p. 025004, (2015), arXiv: 1406.0354.
- C. Duval, M. Elbistan, P. A. Horváthy, P. M. Zhang, “Wigner–Souriau translations and Lorentz symmetry of chiral fermions”, Phys. Lett. B 742, p. 322, (2015), arXiv: 1411.6541.
- M. Stone, V. Dwivedi, T. Zhou, “Wigner Translations and the Observer Dependence of the Position of Massless Spinning Particles”, Phys. Rev. Lett. 114, p. 210402, (2015), arXiv: 1501.04586.
- E. Corinaldesi, A. Papapetrou, “Spinning test particles in general relativity. 2.”, Proc. Roy. Soc. Lond. A 209, p. 259, (1951).
- L. F. O. Costa, J. Natário, “Center of mass, spin supplementary conditions, and the momentum of spinning particles”, Fund. Theor. Phys. 179, p. 215, (2015), arXiv: 1410.6443.
- M. A. Oancea, J. Joudioux, I. Dodin, D. Ruiz, C. F. Paganini, L. Andersson, “Gravitational spin Hall effect of light”, Phys. Rev. D 102, p. 024075, (2020), arXiv: 2003.04553.
- C. Duval, “The General Relativistic Dirac-Pauli Particle: An Underlying Classical Model”, Ann. Inst. H. Poincare Phys. Theor. 25, p. 345 (1976), http://www.numdam.org/item/AIHPA_1976__25_4_345_0.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.