Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Nonlocal damping of spin waves in a magnetic insulator induced by normal, heavy, or altermagnetic metallic overlayer: A Schwinger-Keldysh field theory approach (2312.09140v2)

Published 14 Dec 2023 in cond-mat.mes-hall

Abstract: Understanding spin wave (SW) damping, and how to control it to the point of being able to amplify SW-mediated signals, is one of the key requirements to bring the envisaged magnonic technologies to fruition. Even widely used magnetic insulators with low magnetization damping in their bulk, such as yttrium iron garnet, exhibit 100-fold increase in SW damping due to inevitable contact with metallic layers in magnonic circuits, as observed in very recent experiments [I. Bertelli et al., Adv. Quantum Technol. 4, 2100094 (2021)] mapping SW damping in spatially-resolved fashion. Here, we provide microscopic and rigorous understanding of wavevector-dependent SW damping using extended Landau-Lifshitz-Gilbert equation with nonlocal damping tensor, instead of conventional local scalar Gilbert damping, as derived from Schwinger-Keldysh nonequilibrium quantum field theory. In this picture, the origin of nonlocal magnetization damping and thereby induced wavevector-dependent SW damping is interaction of localized magnetic moments of magnetic insulator with conduction electrons from the examined three different types of metallic overlayers -- normal, heavy, and altermagnetic. Due to spin-split energy-momentum dispersion of conduction electrons in the latter two cases, the nonlocal damping is anisotropic in spin and space, and it can be dramatically reduced by changing the relative orientation of the two layers when compared to the usage of normal metal overlayer.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Y. Li and W. Bailey, Wave-number-dependent Gilbert damping in metallic ferromagnets., Phys. Rev. Lett. 116, 117602 (2016).
  2. M. E. Zhitomirsky and A. L. Chernyshev, Colloquium: Spontaneous magnon decays, Rev. Mod. Phys. 85, 219 (2013).
  3. U. Bajpai, A. Suresh, and B. K. Nikolić, Quantum many-body states and Green's functions of nonequilibrium electron-magnon systems: Localized spin operators versus their mapping to Holstein-Primakoff bosons, Phys. Rev. B 104, 184425 (2021).
  4. E. Hankiewicz, G. Vignale, and Y. Tserkovnyak, Inhomogeneous Gilbert damping from impurities and electron-electron interactions, Phys. Rev. B 78, 020404(R) (2008).
  5. Y. Tserkovnyak, E. M. Hankiewicz, and G. Vignale, Transverse spin diffusion in ferromagnets, Phys. Rev. B 79, 094415 (2009).
  6. P. Nikolić, Universal spin wave damping in magnetic Weyl semimetals, Phys. Rev. B 104, 024414 (2021).
  7. M. Isoda, Spin-wave damping in itinerant electron ferromagnets, J. Phys.: Condens. Matter 2, 3579 (1990).
  8. G. Csaba, A. Papp, and W. Porod, Perspectives of using spin waves for computing and signal processing, Phys. Lett. A 381, 1471 (2017).
  9. A. V. Chumak, Fundamentals of magnon-based computing, arXiv:1901.08934 (2019) .
  10. A. Akhiezer, V. Baryakhtar, and S. Peletminskii, Coherent amplification of spin waves, Sov. Phys. JETP 18, 235 (1964).
  11. F. Bloch, Zur theorie des ferromagnetismus, Z. Phys. 61, 206 (1930).
  12. S.-K. Kim, Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements, J. Phys. D: Appl. Phys. 43, 264004 (2010).
  13. A. A. Serga, A. V. Chumak, and B. Hillebrands, YIG magnonics, J. Phys. D: Appl. Phys. 43, 264002 (2010).
  14. L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging research landscape of altermagnetism, Phys. Rev. X 12, 040501 (2022a).
  15. T. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40, 3443 (2004).
  16. W. M. Saslow, Landau-Lifshitz or Gilbert damping? that is the question, J. Appl. Phys. 105, 07D315 (2009).
  17. S. Zhang and S. L. Zhang, Generalization of the Landau-Lifshitz-Gilbert equation for conducting ferromagnets., Phys. Rev. Lett. 102, 086601 (2009).
  18. F. Casola, T. van der Sar, and A. Yacoby, Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond, Nat. Rev. Mater. 3, 17088 (2018).
  19. F. Reyes-Osorio and B. K. Nikolić, Gilbert damping in metallic ferromagnets from Schwinger-Keldysh field theory: Intrinsically nonlocal and nonuniform, and made anisotropic by spin-orbit coupling, arXiv:2306.13013 (2023) .
  20. A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2023).
  21. U. Bajpai and B. Nikolić, Time-retarded damping and magnetic inertia in the Landau-Lifshitz-Gilbert equation self-consistently coupled to electronic time-dependent nonequilibrium Green functions, Phys. Rev. B 99, 134409 (2019).
  22. A. Suresh, U. Bajpai, and B. K. Nikolić, Magnon-driven chiral charge and spin pumping and electron-magnon scattering from time-dependent quantum transport combined with classical atomistic spin dynamics, Phys. Rev. B 101, 214412 (2020).
  23. F. M. Haehl, R. Loganayagam, and M. Rangamani, Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace, J. High Energy Phys. 2017, 69 (2017a).
  24. F. M. Haehl, R. Loganayagam, and M. Rangamani, Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology, J. High Energy Phys. 2017, 70 (2017b).
  25. J. Berges, Nonequilibrium quantum fields: From cold atoms to cosmology, arXiv:1503.02907 (2015) .
  26. J. Anders, C. R. J. Sait, and S. A. R. Horsley, Quantum Brownian motion for magnets, New J. Phys. 24, 033020 (2022).
  27. S. Leiva M., S. A. Díaz, and A. S. Nunez, Origin of the magnetoelectric couplings in the spin dynamics of molecular magnets, Phys. Rev. B 107, 094401 (2023).
  28. B. Halperin and P. Hohenberg, Hydrodynamic theory of spin waves, Phys. Rev. 188, 898 (1969).
  29. M. Sayad and M. Potthoff, Spin dynamics and relaxation in the classical-spin Kondo-impurity model beyond the Landau-Lifschitz-Gilbert equation, New J. Phys. 17, 113058 (2015).
  30. D. Ralph and M. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320, 1190 (2008).
  31. C. Sun and J. Linder, Spin pumping from a ferromagnetic insulator into an altermagnet, Phys. Rev. B 108, L140408 (2023).
  32. M. Papaj, Andreev reflection at the altermagnet-superconductor interface, Phys. Rev. B 108, L060508 (2023).
  33. C. Sun, A. Brataas, and J. Linder, Andreev reflection in altermagnets, Phys. Rev. B 108, 054511 (2023).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube