Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Treewidth is Polynomial in Maximum Degree on Weakly Sparse Graphs Excluding a Planar Induced Minor (2312.07962v2)

Published 13 Dec 2023 in math.CO, cs.DM, and cs.DS

Abstract: A graph $G$ contains a graph $H$ as an induced minor if $H$ can be obtained from $G$ after vertex deletions and edge contractions. We show that for every $k$-vertex planar graph $H$, every graph $G$ excluding $H$ as an induced minor and $K_{t,t}$ as a subgraph has treewidth at most $\Delta(G){f(k,t)}$ where $\Delta(G)$ denotes the maximum degree of $G$. Without requiring the absence of a $K_{t,t}$ subgraph, Korhonen [JCTB '23] has shown the upper bound of $k{O(1)} 2{\Delta(G)5}$ whose dependence in $\Delta(G)$ is exponential. Our result partially answers a question of Chudnovsky [Dagstuhl seminar '23] asking whether the treewidth of graphs with $\Delta(G)=O(\log{|V(G)|})$ excluding both a $k$-vertex planar graph as an induced minor and the biclique $K_{t,t}$ as a subgraph is in $O_{k,t}(\log |V(G)|)$. We confirm that the treewidth is in this case polylogarithmic in $|V(G)|$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Sparse graphs with bounded induced cycle packing number have logarithmic treewidth. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22–25, 2023, pages 3006–3028. SIAM, 2023. doi:10.1137/1.9781611977554.ch116.
  2. Maximum independent set when excluding an induced minor: K1+t⁢K2subscript𝐾1𝑡subscript𝐾2{K}_{1}+t{K}_{2}italic_K start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_t italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and t⁢C3⊎C4⊎𝑡subscript𝐶3subscript𝐶4t{C}_{3}\uplus{C}_{4}italic_t italic_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ⊎ italic_C start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. CoRR, abs/2302.08182, to appear at ESA 2023. arXiv:2302.08182.
  3. Degree-3 treewidth sparsifiers. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pages 242–255. SIAM, 2015. doi:10.1137/1.9781611973730.19.
  4. Vertex Partitioning in Graphs: From Structure to Algorithms (Dagstuhl Seminar 22481). Dagstuhl Reports, 12(11):109–123, 2023. doi:10.4230/DagRep.12.11.109.
  5. Treewidth versus clique number. I. graph classes with a forbidden structure. SIAM J. Discret. Math., 35(4):2618–2646, 2021. doi:10.1137/20M1352119.
  6. Treewidth versus clique number. III. tree-independence number of graphs with a forbidden structure. CoRR, abs/2206.15092, 2022. arXiv:2206.15092.
  7. Treewidth versus clique number. II. tree-independence number, 2021. doi:10.48550/ARXIV.2111.04543.
  8. James Davies. Oberwolfach report 1/2022. doi:10.4171/OWR/2022/1., 2022.
  9. Some results on tree decomposition of graphs. Journal of Graph Theory, 20(4):481–499, 1995. doi:10.1002/jgt.3190200412.
  10. Tree-partitions with small bounded degree trees, 2023. arXiv:2210.12577.
  11. Graph product structure for non-minor-closed classes. Journal of Combinatorial Theory, Series B, 162:34–67, 2023. doi:10.1016/j.jctb.2023.03.004.
  12. Treewidth of graphs with balanced separations. J. Comb. Theory, Ser. B, 137:137–144, 2019. URL: https://doi.org/10.1016/j.jctb.2018.12.007, doi:10.1016/J.JCTB.2018.12.007.
  13. Independent set on Pksubscript𝑃𝑘{P}_{k}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT-free graphs in quasi-polynomial time. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pages 613–624. IEEE, 2020. doi:10.1109/FOCS46700.2020.00063.
  14. private communication, 2023.
  15. Maximum weight independent set in graphs with no long claws in quasi-polynomial time. CoRR, abs/2305.15738, 2023. arXiv:2305.15738.
  16. Finding large induced sparse subgraphs in C>tsubscript𝐶absent𝑡{C}_{>t}italic_C start_POSTSUBSCRIPT > italic_t end_POSTSUBSCRIPT-free graphs in quasipolynomial time. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21–25, 2021, pages 330–341. ACM, 2021. doi:10.1145/3406325.3451034.
  17. Excluded minors, network decomposition, and multicommodity flow. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16–18, 1993, San Diego, CA, USA, pages 682–690. ACM, 1993. doi:10.1145/167088.167261.
  18. Tuukka Korhonen. Grid induced minor theorem for graphs of small degree. Journal of Combinatorial Theory, Series B, 160:206–214, 2023. doi:10.1016/j.jctb.2023.01.002.
  19. Induced-minor-free graphs: Separator theorem, subexponential algorithms, and improved hardness of recognition. CoRR, abs/2308.04795, 2023. arXiv:2308.04795.
  20. James R. Lee. Separators in region intersection graphs. CoRR, abs/1608.01612, 2016. arXiv:1608.01612.
  21. James R. Lee. Separators in region intersection graphs. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9–11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 1:1–1:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ITCS.2017.1.
  22. Quasi-polynomial-time algorithm for independent set in Ptsubscript𝑃𝑡{P}_{t}italic_P start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT-free graphs via shrinking the space of induced paths. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11–12, 2021, pages 204–209. SIAM, 2021. doi:10.1137/1.9781611976496.23.
  23. Andrei Cosmin Pohoata. Unavoidable induced subgraphs of large graphs. 2014.
  24. Frank P. Ramsey. On a problem of formal logic. In Proc. London Math. Soc. series 2, volume 30 of 264–286, 1930.
  25. Graph minors. V. excluding a planar graph. Journal of Combinatorial Theory, Series B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.
  26. Quickly excluding a planar graph. Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.1073.
  27. David R. Wood. On tree-partition-width. European Journal of Combinatorics, 30(5):1245–1253, 2009. Part Special Issue on Metric Graph Theory. doi:10.1016/j.ejc.2008.11.010.
Citations (1)

Summary

We haven't generated a summary for this paper yet.