Dynamical friction in self-interacting ultralight dark matter (2312.07684v1)
Abstract: We explore how dynamical friction in an ultralight dark matter (ULDM) background is affected by dark matter self-interactions. We calculate the force of dynamical friction on a point mass moving through a uniform ULDM background with self-interactions, finding that the force of dynamical friction vanishes for sufficiently strong repulsive self-interactions. Using the pseudospectral solver $\texttt{UltraDark.jl}$, we show with simulations that reasonable values of the ULDM self-interaction strength and particle mass cause $\mathcal{O}(1)$ differences in the acceleration of an object like a supermassive black hole (SMBH) traveling near the center of a soliton, relative to the case with no self-interactions. For example, repulsive self-interactions with $\lambda = 10{-90}$ yield a deceleration due to dynamical friction $\approx70\%$ smaller than a model with no self-interactions. We discuss the observational implications of our results for SMBHs near soliton centers and for massive satellite galaxies falling into ultralight axion halos and show that outcomes are dependent on whether a self-interaction is present or not.
- P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
- G. Bertone and D. Hooper, Rev. Mod. Phys. 90, 045002 (2018).
- M. R. Buckley and A. H. G. Peter, Phys. Rept. 761, 1 (2018), arXiv:1712.06615 [astro-ph.CO] .
- C. Armendariz-Picon and J. T. Neelakanta, JCAP 03, 049 (2014), arXiv:1309.6971 [astro-ph.CO] .
- J. S. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017), arXiv:1707.04256 [astro-ph.CO] .
- A. Del Popolo and F. Pace, Astrophys. Space Sci. 361, 162 (2016), [Erratum: Astrophys.Space Sci. 361, 225 (2016)], arXiv:1502.01947 [astro-ph.GA] .
- D. J. E. Marsh, Phys. Rev. D 91, 123520 (2015), arXiv:1504.00308 [astro-ph.CO] .
- D. J. E. Marsh, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .
- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
- P. Sikivie, Int. J. Mod. Phys. A 25, 554 (2010), arXiv:0909.0949 [hep-ph] .
- J. Fan, Phys. Dark Univ. 14, 84 (2016), arXiv:1603.06580 [hep-ph] .
- E. O. Nadler et al. (DES), Phys. Rev. Lett. 126, 091101 (2021), arXiv:2008.00022 [astro-ph.CO] .
- P.-H. Chavanis, Phys. Rev. D94, 083007 (2016), arXiv:1604.05904 [astro-ph.CO] .
- B. Dave and G. Goswami, (2023), arXiv:2304.04463 [astro-ph.CO] .
- V. Delgado and A. Muñoz Mateo, Mon. Not. Roy. Astron. Soc. 518, 4064 (2022), arXiv:2201.12418 [astro-ph.CO] .
- N. Glennon and C. Prescod-Weinstein, Phys. Rev. D 104, 083532 (2021), arXiv:2011.09510 [astro-ph.CO] .
- T. Rindler-Daller and P. R. Shapiro, Mon. Not. Roy. Astron. Soc. 422, 135 (2012), arXiv:1106.1256 [astro-ph.CO] .
- S. Chandrasekhar, Astrophys. J. 97, 255 (1943).
- F. Antonini and D. Merritt, Astrophys. J. 745, 83 (2012), arXiv:1108.1163 [astro-ph.GA] .
- Y. Wang and R. Easther, Phys. Rev. D 105, 063523 (2022), arXiv:2110.03428 [gr-qc] .
- R. Buehler and V. Desjacques, Phys. Rev. D 107, 023516 (2023), arXiv:2207.13740 [astro-ph.CO] .
- J. Binney and S. Tremaine, Galactic Dynamics: Second Edition (2008).
- U. Banik and F. C. van den Bosch, Astrophys. J. 912, 43 (2021), arXiv:2103.05004 [astro-ph.GA] .
- S. Tremaine and M. D. Weinberg, Mon. Not. Roy. Astron. Soc. 209, 729 (1984).
- D. Lynden-Bell and A. J. Kalnajs, Mon. Not. Roy. Astron. Soc. 157, 1 (1972).
- P.-H. Chavanis, Phys. Rev. D 103, 123551 (2021), arXiv:2011.01038 [gr-qc] .
- N. Musoke, “UltraDark.jl: v0.8.0,” (2022).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.