Axion Cloud Decay due to the Axion-photon Conversion with Multi-pole Background Magnetic Fields (2312.07058v2)
Abstract: We consider axion cloud decay due to the axion-photon conversion with multi-pole background magnetic fields. We focus on the $\ell=m=1$ and $n=2$ mode for the axion field configuration since it has the largest growth rate associated with superradiant instability. Under the existence of a background multi-pole magnetic field, the axion field can be converted into the electromagnetic field through the axion-photon coupling. Then the decay rate due to the dissipation of the converted photons is calculated in a successive approximation. We found that the decay rate is significantly dependent on the azimuthal quantum number characterizing the background magnetic field, and can be comparable to or larger than the growth rate of the superradiant instability.
- P. Svrcek and E. Witten, JHEP 06, 051 (2006), arXiv:hep-th/0605206, Axions In String Theory.
- Phys. Rev. D 81, 123530 (2010), arXiv:0905.4720, String Axiverse.
- Phys. Rev. Lett. 38, 1440 (1977), CP Conservation in the Presence of Instantons.
- Phys. Rev. D 16, 1791 (1977), Constraints Imposed by CP Conservation in the Presence of Instantons.
- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978), A New Light Boson?
- F. Wilczek, Phys. Rev. Lett. 40, 279 (1978), Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons.
- Particle Data Group, P. A. Zyla et al., PTEP 2020, 083C01 (2020), Review of Particle Physics.
- Annals Phys. 118, 139 (1979), INSTABILITIES OF MASSIVE SCALAR PERTURBATIONS OF A ROTATING BLACK HOLE.
- S. L. Detweiler, Phys. Rev. D 22, 2323 (1980), KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES.
- Lect. Notes Phys. 906, pp.1 (2015), arXiv:1501.06570, Superradiance: New Frontiers in Black Hole Physics.
- Phys. Rev. Lett. 107, 241101 (2011), arXiv:1109.6021, Floating and sinking: The Imprint of massive scalars around rotating black holes.
- H. Yoshino and H. Kodama, Prog. Theor. Phys. 128, 153 (2012), arXiv:1203.5070, Bosenova collapse of axion cloud around a rotating black hole.
- H. Yoshino and H. Kodama, PTEP 2014, 043E02 (2014), arXiv:1312.2326, Gravitational radiation from an axion cloud around a black hole: Superradiant phase.
- Class. Quant. Grav. 32, 134001 (2015), arXiv:1411.0686, Black holes as particle detectors: evolution of superradiant instabilities.
- H. Yoshino and H. Kodama, Class. Quant. Grav. 32, 214001 (2015), arXiv:1505.00714, The bosenova and axiverse.
- Phys. Rev. D 91, 084011 (2015), arXiv:1411.2263, Discovering the QCD Axion with Black Holes and Gravitational Waves.
- R. Brito et al., Phys. Rev. D 96, 064050 (2017), arXiv:1706.06311, Gravitational wave searches for ultralight bosons with LIGO and LISA.
- Phys. Rev. D 99, 044001 (2019), arXiv:1804.03208, Probing Ultralight Bosons with Binary Black Holes.
- J. Zhang and H. Yang, Phys. Rev. D 99, 064018 (2019), arXiv:1808.02905, Gravitational floating orbits around hairy black holes.
- J. Zhang and H. Yang, Phys. Rev. D 101, 043020 (2020), arXiv:1907.13582, Dynamic Signatures of Black Hole Binaries with Superradiant Clouds.
- Phys. Rev. D 101, 083019 (2020), arXiv:1912.04932, Gravitational Collider Physics.
- Astrophys. J. 908, 78 (2021), arXiv:2009.11106, Gravitational Collider Physics via Pulsar-Black Hole Binaries.
- (2020), arXiv:2012.03473, Renormalization group analysis of superradiant growth of self-interacting axion cloud.
- (2022), arXiv:2211.01949, Impact of multiple modes on the evolution of self-interacting axion condensate around rotating black holes.
- PTEP 2022, 043E03 (2022), arXiv:2201.04382, Adiabatic evolution of the self-interacting axion field around rotating black holes.
- PTEP 2022, 043E01 (2022), arXiv:2112.05774, Axion cloud evaporation during inspiral of black hole binaries: The effects of backreaction and radiation.
- (2023), arXiv:2301.13213, Evolution of binary systems accompanying axion clouds in extreme mass ratio inspirals.
- CAST, V. Anastassopoulos et al., Nature Phys. 13, 584 (2017), arXiv:1705.02290, New CAST Limit on the Axion-Photon Interaction.
- ADMX, C. Boutan et al., Phys. Rev. Lett. 121, 261302 (2018), arXiv:1901.00920, Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter.
- J. L. Ouellet et al., Phys. Rev. Lett. 122, 121802 (2019), arXiv:1810.12257, First Results from ABRACADABRA-10 cm: A Search for Sub-μ𝜇\muitalic_μeV Axion Dark Matter.
- Phys. Rev. D 102, 123005 (2020), arXiv:2008.11741, Bounds on axionlike particles from the diffuse supernova flux.
- C. P. Salemi et al., (2021), arXiv:2102.06722, The search for low-mass axion dark matter with ABRACADABRA-10cm.
- Phys. Rev. D 41, 1231 (1990), Limits on a Lorentz and Parity Violating Modification of Electrodynamics.
- Phys. Rev. D 43, 3789 (1991), The Einstein equivalence principle and the polarization of radio galaxies.
- D. Harari and P. Sikivie, Phys. Lett. B 289, 67 (1992), Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background.
- M. M. Ivanov et al., JCAP 02, 059 (2019), arXiv:1811.10997, Constraining the photon coupling of ultra-light dark-matter axion-like particles by polarization variations of parsec-scale jets in active galaxies.
- Phys. Rev. Lett. 122, 191101 (2019), arXiv:1811.03525, Hunting Axion Dark Matter with Protoplanetary Disk Polarimetry.
- Phys. Rev. D 101, 063012 (2020), arXiv:1901.10981, Detecting axionlike dark matter with linearly polarized pulsar light.
- Phys. Rev. D 100, 015040 (2019), arXiv:1903.02666, Axion Dark Matter Detection with CMB Polarization.
- A. Caputo et al., Phys. Rev. D 100, 063515 (2019), arXiv:1902.02695, Constraints on millicharged dark matter and axionlike particles from timing of radio waves.
- Phys. Rev. Lett. 124, 061102 (2020), arXiv:1905.02213, Probing Axions with Event Horizon Telescope Polarimetric Measurements.
- G.-W. Yuan et al., (2020), arXiv:2008.13662, Testing the ALP-photon coupling with polarization measurements of Sagittarius A*.
- (2020), arXiv:2007.01440, Searching for axion-like particles under strong gravitational lenses.
- C.-M. Yoo et al., Publ. Astron. Soc. Jap. 74, 64 (2022), arXiv:2103.13227, Axion cloud decay due to the axion–photon conversion with background magnetic fields.
- F. J. Zerilli, Phys. Rev. D 9, 860 (1974), Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.