Drinfel'd Double of Bialgebroids for String and M Theories: Dual Calculus Framework (2312.06584v1)
Abstract: We extend the notion of Lie bialgebroids for more general bracket structures used in string and M theories. We formalize the notions of calculus and dual calculi on algebroids. We achieve this by reinterpreting the main results of the matched pairs of Leibniz algebroids. By examining a rather general set of fundamental algebroid axioms, we present the compatibility conditions between two calculi on vector bundles which are not dual in the usual sense. Given two algebroids equipped with calculi satisfying the compatibility conditions, we construct its double on their direct sum. This generalizes the Drinfel'd double of Lie bialgebroids. We discuss several examples from the literature including exceptional Courant brackets. Using Nambu-Poisson structures, we construct an explicit example, which is important both from physical and mathematical point of views. This example can be considered as the extension of triangular Lie bialgebroids in the realm of higher Courant algebroids, that automatically satisfy the compatibility conditions. We extend the Poisson generalized geometry by defining Nambu-Poisson exceptional generalized geometry and prove some preliminary results in this framework. We also comment on the global picture in the framework of formal rackoids and we slightly extend the notion for vector bundle valued metrics.
- Duality in string background space. Nuclear Physics B, 322(1):167–184, 1989.
- Target space duality in string theory. Physics Reports, 244(2-3):77–202, 1994.
- C. Hull and B. Zwiebach. Double field theory. Journal of High Energy Physics, 2009(09):099, 2009.
- C. Hull and B. Zwiebach. The gauge algebra of double field theory and Courant brackets. Journal of High Energy Physics, 2009(09):090, 2009.
- Generalized metric formulation of double field theory. Journal of High Energy Physics, 08:008, 2010.
- The effective action of double field theory. Journal of High Energy Physics, 2011(11):1–34, 2011.
- B. Zwiebach. Doubled field theory, T-duality and Courant brackets. In Strings and Fundamental Physics, pages 265–291. Springer, 2012.
- Double field theory of type II Strings. Journal of High Energy Physics, 09:013, 2011.
- The spacetime of double field theory: Review, remarks, and outlook. Fortschritte der Physik, 61:926–966, 2013.
- Exploring double field theory. Journal of High Energy Physics, 2013(6):1–47, 2013.
- T. J. Courant. Dirac manifolds. Transactions of the American Mathematical Society, 319(2):631–661, 1990.
- N. Hitchin. Lectures on generalized geometry. preprint arXiv:1008.0973, 2010.
- New supersymmetric string compactifications. Journal of High Energy Physics, 2003(03):061, 2003.
- Nongeometric flux compactifications. Journal of High Energy Physics, 2005(10):085, 2005.
- M. Graña. Flux compactifications and generalized geometries. Classical and Quantum Gravity, 23:S883–S926, 2006.
- T-duality, generalized geometry and non-geometric backgrounds. Journal of High Energy Physics, 2009(04):075, 2009.
- N. Kaloper and R. C. Myers. The o(dd) story of massive supergravity. Journal of High Energy Physics, 1999(05):010, 1999.
- D. Roytenberg. Quasi-Lie bialgebroids and twisted Poisson manifolds. Letters in Mathematical Physics, 61:123–137, 2002.
- Bianchi identities for non-geometric fluxes from quasi-Poisson structures to Courant algebroids. Fortschritte der Physik, 60(11-12):1217–1228, 2012.
- N. Ikeda. Chern-Simons gauge theory coupled with BF theory. International Journal of Modern Physics A, 18(15):2689–2702, 2003.
- Double field theory and membrane sigma-models. Journal of High Energy Physics, 2018(7):1–54, 2018.
- D. Roytenberg. AKSZ-BV formalism and Courant algebroid-induced topological field theories. Letters in Mathematical Physics, 79:143–159, 2007.
- Fluxes in exceptional field theory and threebrane sigma-models. Journal of High Energy Physics, 2019(5):1–34, 2019.
- P. Ševera. Letters to Alan Weinstein about Courant algebroids. preprint arXiv:1707.00265, 2017.
- Manin triples for Lie bialgebroids. Journal of Differential Geometry, 45(3):547–574, 1997.
- K. C. H. Mackenzie and P. Xu. Lie bialgebroids and Poisson groupoids. Duke Mathematical Journal, 73(2):415–452, 1994.
- C. Klimčík and P. Ševera. Dual non-Abelian duality and the Drinfeld double. Physics Letters B, 351(4):455–462, 1995.
- C. Klimčík and P. Ševera. Poisson-Lie T duality and loop groups of Drinfeld doubles. Physics Letters B, 372:65–71, 1996.
- F. Hassler. Poisson-Lie T-duality in double field theory. Physics Letters B, 807:135455, 2020.
- Doubled aspects of generalised dualities and integrable deformations. Journal of High Energy Physics, 02:189, 2019.
- An invitation to Poisson-Lie T-duality in double field theory and its applications. Proceedings of Science, CORFU2018:113, 2019.
- Y. Sakatani. Type II DFT solutions from Poisson-Lie T-duality/plurality. Progress of Theoretical and Experimental Physics, 2019(7):073B04, 2019.
- D. C. Thompson. An introduction to generalised dualities and their applications to holography and integrability. Proceedings of Science, CORFU2018:099, 2019.
- A. Çatal-Özer and S. Tunalı. Yang-Baxter deformation as an O(d,d)𝑂𝑑𝑑O(d,d)italic_O ( italic_d , italic_d ) transformation. Classical and Quantum Gravity, 37(7):075003, 2020.
- T. Mokri. Matched pairs of Lie algebroids. Glasgow Mathematical Journal, 39(2):167–181, 1997.
- R. Tang and Y. Sheng. Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation. Journal of Noncommutative Geometry, 16(4):1179–1211, 2022.
- Y. Sakatani. U-duality extension of Drinfel’d double. Progress of Theoretical and Experimental Physics, 2020(2):023B08, 2020.
- E. Malek and D. C. Thompson. Poisson-Lie U-duality in exceptional field theory. Journal of High Energy Physics, 2020(4):1–22, 2020.
- E6(6)subscript𝐸66{E}_{6(6)}italic_E start_POSTSUBSCRIPT 6 ( 6 ) end_POSTSUBSCRIPT exceptional Drinfel’d algebras. Journal of High Energy Physics, 2021(1):1–28, 2021.
- C. D. A. Blair and S. Zhidkova. Generalised U-dual solutions via ISO(7)𝐼𝑆𝑂7{ISO}(7)italic_I italic_S italic_O ( 7 ) gauged supergravity. Journal of High Energy Physics, 2022(12):1–16, 2022.
- S. Kumar and E. T. Musaev. On 10-dimensional exceptional Drinfeld algebras. Progress of Theoretical and Experimental Physics, 2023(8), July 2023.
- Duality invariant actions and generalised geometry. Journal of High Eenergy Physics, 02:108, 2012.
- O. Hohm and H. Samtleben. Exceptional form of D=11 supergravity. Physical Review Letters, 111:231601, 2013.
- O. Hohm and H. Samtleben. Exceptional field theory I: E6(6)subscript𝐸66E_{6(6)}italic_E start_POSTSUBSCRIPT 6 ( 6 ) end_POSTSUBSCRIPT covariant form of M-theory and type IIB. Physical Review Letters, D89:066016, 2014.
- The geometry, branes and applications of exceptional field theory. International Journal of Modern Physics A, 35(30):2030014, 2020.
- E. T. Musaev. Exceptional field theory: SL(5)𝑆𝐿5SL(5)italic_S italic_L ( 5 ). Journal of High Energy Physics, 02:012, 2016.
- C. M. Hull. Generalised geometry for M-theory. Journal of High Energy Physics, 2007(07):079, 2007.
- Matched pairs of Leibniz algebroids, Nambu-Jacobi structures and modular class. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 333(9):861–866, 2001.
- Pre-metric-Bourbaki algebroids: Cartan calculus for M-theory. preprint arXiv:2210.00548, 2022.
- G-algebroids: A unified framework for exceptional and generalised geometry, and Poisson-Lie duality. Fortschritte der Physik, 69(4-5):2100028, 2021.
- N. Halmagyi. Non-geometric backgrounds and the first order string sigma model. preprint arXiv:0906.2891, 2009.
- N. Halmagyi. Non-geometric string backgrounds and worldsheet algebras. Journal of High Energy Physics, 2008(07):137, 2008.
- Y. Nambu. Generalized Hamiltonian dynamics. Physical Review D, 7(8):2405, 1973.
- L. Takhtajan. On foundation of the generalized Nambu mechanics. Communications in Mathematical Physics, 160:295–315, 1994.
- Y. Bi and Y. Sheng. On higher analogues of Courant algebroids. Science China Mathematics, 54:437–447, 2011.
- Poisson-generalized geometry and R-flux. International Journal of Modern Physics A, 30(17):1550097, 2015.
- P. P. Pacheco and D. Waldram. M-theory, exceptional generalised geometry and superpotentials. Journal of High Energy Physics, 2008(09):123, 2008.
- J.-L. Loday. Une version non commutative des algebres de Lie: les algebres de Leibniz. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25, 44:127–151, 1993.
- N. Ikeda and S. Sasaki. Global aspects of doubled geometry and pre-rackoid. Journal of Mathematical Physics, 62(3), 2021.
- T. Dereli and K. Doğan. Metric-connection geometries on pre-Leibniz algebroids: A search for geometrical structure in string models. Journal of Mathematical Physics, 62(3), 2021.
- R. J. Fernandes. Lie algebroids, holonomy and characteristic classes. Advances in Mathematics, 170(1):119–179, 2002.
- V. G. Drinfeld. Quantum groups. Zapiski Nauchnykh Seminarov POMI, 155:18–49, 1986.
- Y. Kosmann-Schwarzbach. Exact Gerstenhaber algebras and Lie bialgebroids. Acta Applicandae Mathematica, 41:153–165, 1995.
- K. C. H. Mackenzie. Lie groupoids and Lie algebroids in differential geometry, volume 124. Cambridge university press, 1987.
- I. Vaisman. On the geometry of double field theory. Journal of Mathematical Physics, 53(3), 2012.
- Doubled aspects of Vaisman algebroid and gauge symmetry in double field theory. Journal of Mathematical Physics, 61(1), 2020.
- I. Y. Dorfman. Dirac structures of integrable evolution equations. Physics Letters A, 125(5):240–246, 1987.
- K. Uchino. Remarks on the definition of a Courant algebroid. Letters in Mathematical Physics, 60:171–175, 2002.
- D. Roytenberg. Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, University of California, Berkeley, 1999.
- E. Barreiro and S. Benayadi. A new approach to Leibniz bialgebras. Algebras and Representation Theory, 19:71–101, 2016.
- J. Palmkvist. The tensor hierarchy algebra. Journal of Mathematical Physics, 55(1), 2014.
- V. G. Drinfel’d. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. In Yang-Baxter Equation In Integrable Systems, pages 222–225. World Scientific, 1990.
- Y. Kosmann-Schwarzbach and F. Magri. Poisson-Lie groups and complete integrability. I. Drinfeld bialgebras, dual extensions and their canonical representations. In Annales de l’IHP Physique théorique, volume 49(4), pages 433–460, 1988.
- J.-H. Lu and A. Weinstein. Poisson Lie groups, dressing transformations, and Bruhat decompositions. Journal of Differential Geometry, 31(2):501–526, 1990.
- Y. Kosmann-Schwarzbach. Lie bialgebras, Poisson Lie groups, and dressing transformations. In Integrability of nonlinear systems, pages 107–173. Springer, 2004.
- S. Majid. Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations. Pacific Journal of Mathematics, 141(2):311–332, 1990.
- K. C. H. Mackenzie. Double Lie algebroids and second-order geometry, I. Advances in Mathematics, 94(2):180–239, 1992.
- K. C. H. Mackenzie and P. Xu. Integration of Lie bialgebroids. Topology, 39(3):445–467, 2000.
- A. L. Agore and G. Militaru. Unified products for Leibniz algebras. Applications. Linear Algebra and its Applications, 439(9):2609–2633, 2013.
- E-Courant algebroids. International Mathematics Research Notices, 2010.
- Y-algebroids and E7(7)×ℝ+subscript𝐸77superscriptℝ{E}_{7(7)}\times\mathbb{R}^{+}italic_E start_POSTSUBSCRIPT 7 ( 7 ) end_POSTSUBSCRIPT × blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT-generalised geometry. preprint arXiv:2308.01130, 2023.
- T. Dereli and K. Doğan. ‘Anti-commutable’ pre-Leibniz algebroids and admissible connections. Journal of Geometry and Physics, 186, 2023.
- The supergeometry of Loday algebroids. The Journal of Geometric Mechanics, 5(2):85–213, 2011.
- B. Jurčo and J. Vysokỳ. Leibniz algebroids, generalized Bismut connections and Einstein-Hilbert actions. Journal of Geometry and Physics, 97:25–33, 2015.
- D. Baraglia. Leibniz algebroids, twistings and exceptional generalized geometry. Journal of Geometry and Physics, 62(5):903–934, 2012.
- K. C. H. Mackenzie. General theory of Lie groupoids and Lie algebroids, volume 213. Cambridge University Press, 2005.
- O. Hohm and Y.-N. Wang. Tensor hierarchy and generalized Cartan calculus in SL(3)×\times× SL(2) exceptional field theory. Journal of High Energy Physics, 2015(4):1–52, 2015.
- Y.-N. Wang. Generalized Cartan calculus in general dimension. Journal of High Energy Physics, 2015(7):1–31, 2015.
- Formality of the homotopy calculus algebra of Hochschild (co)chains. preprint arXiv:0807.5117, 2008.
- Y. Kosmann-Schwarzbach. Derived brackets. Letters in Mathematical Physics, 69(1–3):61–87, 2004.
- A. S. Arvanitakis. Brane Wess-Zumino terms from AKSZ and exceptional generalised geometry as an L∞subscript𝐿{L}_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-algebroid. Advances in Theoretical and Mathematical Physics, 23(5):1159–1213, 2018.
- p-brane actions and higher Roytenberg brackets. Journal of High Energy Physics, 2013(2):1–22, 2013.
- M. Zambon. L∞subscript𝐿{L}_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-algebras and higher analogues of Dirac structures and Courant algebroids. Journal of Symplectic Geometry, 10(4):563–599, 2012.
- On higher Dirac structures. International Mathematics Research Notices, 2019(5):1503–1542, 2019.
- H. Mori and S. Sasaki. More on doubled aspects of algebroids in double field theory. Journal of Mathematical Physics, 61(12), 2020.
- D. Iglesias and J. C. Marrero. Generalized Lie bialgebroids and Jacobi structures. Journal of Geometry and Physics, 40(2):176–200, 2001.
- Z. Chen and Z.-J. Liu. Omni-Lie algebroids. Journal of Geometry and Physics, 60(5):799–808, 2010.
- J. J. Fernandez-Melgarejo and Y. Sakatani. Jacobi-Lie T-plurality. SciPost Physics, 11(2):038, 2021.
- Dirac structures for generalized Lie bialgebroids. Journal of Physics A: Mathematical and General, 37(7):2671, 2004.
- A. Weinstein. Omni-Lie algebras, microlocal analysis of the Schrodinger equation and related topics. Kyoto University Research Information Repository, 1176:95–102, 2000.
- Y. Kosmann-Schwarzbach and K. C. H. Mackenzie. Differential operators and actions of Lie algebroids. Contemporary Mathematics, 315:213–234, 2002.
- M. Crainic and R. L. Fernandes. Secondary characteristic classes of Lie algebroids. In Quantum Field Theory and Noncommutative Geometry, pages 157–176. Springer, 2005.
- Wade A. Conformal Dirac structures. Letters in Mathematical Physics, 53:331–348, 2000.
- Higher omni-Lie algebroids. Journal of Lie Theory, 29:881–899, 2019.
- Y. Hagiwara. Nambu-Dirac manifolds. Journal of Physics A: Mathematical and General, 35(5):1263, 2002.
- Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries. Journal of Geometry and Physics, 54(4):400–426, 2005.
- A. Alekseev and T. Strobl. Current algebras and differential geometry. Journal of High Energy Physics, 2005(03):035, 2005.
- Dirac sigma models. Communications in Mathematical Physics, 260:455–480, 2005.
- A. Kotov and T. Strobl. Generalizing geometry - algebroids and sigma models. IRMA Lectures in Mathematics and Theoretical Physics, 16, 2010.
- Dirac structures on nilmanifolds and coexistence of fluxes. Nuclear Physics B, 883:59–82, 2014.
- D-branes in generalized geometry and Dirac-Born-Infeld action. Journal of High Energy Physics, 2012(10):1–35, 2012.
- D-brane on Poisson manifold and generalized geometry. International Journal of Modern Physics A, 29(15):1450089, 2014.
- Topological T-duality via Lie algebroids and Q-flux in Poisson-generalized geometry. International Journal of Modern Physics A, 30(30):1550182, 2015.
- J. Bagger and N. Lambert. Modeling multiple M2-branes. Physical Review D, 75(4):045020, 2007.
- J. Bagger and N. Lambert. Gauge symmetry and supersymmetry of multiple M2-branes. Physical Review D, 77(6):065008, 2008.
- J. Bagger and N. Lambert. Comments on multiple M2-branes. Journal of High Energy Physics, 2008(02):105, 2008.
- A. Gustavsson. Algebraic structures on parallel M2 branes. Nuclear Physics B, 811(1-2):66–76, 2009.
- A. Basu and J. A. Harvey. The M2-M5 brane system and a generalized Nahm’s equation. Nuclear Physics B, 713(1-3):136–150, 2005.
- P.-M. Ho and Y. Matsuo. M5 from M2. Journal of High Energy Physics, 2008(06):105, 2008.
- P.-M. Ho. Nambu bracket for M theory. Nuclear Physics A, 844(1-4):95–108, 2010.
- The geometry of the master equation and topological quantum field theory. International Journal of Modern Physics A, 12(07):1405–1429, 1997.
- P. Bouwknegt and B. Jurčo. AKSZ construction of topological open p-brane action and Nambu brackets. Reviews in Mathematical Physics, 25(03):1330004, 2013.
- A. Lichnerowicz. Les variétés de Poisson et leurs algebres de Lie associées. Journal of Différential Geometry, 12(2):253–300, 1977.
- J.-L. Koszul. Crochet de Schouten-Nijenhuis et cohomologie. Astérisque, 137(257-271):4–3, 1985.
- Leibniz algebroid associated with a Nambu-Poisson structure. Journal of Physics A: Mathematical and General, 32(46):8129, 1999.
- A. Wade. Nambu-Dirac structures for Lie algebroids. Letters in Mathematical Physics, 61:85–99, 2002.
- Z.-J. Liu and P. Xu. Exact Lie bialgebroids and Poisson groupoids. Geometric & Functional Analysis GAFA, 6(1):138–145, 1996.
- E. Witten. Supersymmetry and Morse theory. Journal of Differential Geometry, 17(4):661–692, 1982.
- Exceptional algebroids and type IIB superstrings. Fortschritte der Physik, 70(1):2100104, 2022.
- O. Hulík and F. Valach. Exceptional algebroids and type IIA superstrings. Fortschritte der Physik, 70(6):2200027, 2022.
- H. Muraki. New construction of internal space in supergravity theory based on generalized geometry. PhD thesis, Tohoku University, 2015.
- I. Vaisman. Lectures on the geometry of Poisson manifolds, volume 118. Birkhäuser, 2012.
- Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids. Journal of High Energy Physics, 2013(2):1–36, 2013.
- C. M. Hull. A geometry for non-geometric string backgrounds. Journal of High Energy Physics, 2005(10):065, 2005.
- C. M. Hull. Doubled geometry and T-folds. Journal of High Energy Physics, 2007(07):080, 2007.
- Non-geometric fluxes, asymmetric strings and nonassociative geometry. Journal of Physics A: Mathematical and Theoretical, 44(38):385401, 2011.
- On the generalized geometry origin of noncommutative gauge theory. Journal of High Energy Physics, 2013(7):1–17, 2013.
- The intriguing structure of non-geometric frames in string theory. Fortschritte der Physik, 61(10):893–925, 2013.
- Multisymplectic geometry and Lie groupoids. Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden, pages 57–73, 2015.
- M. K. Kinyon. Leibniz algebras, Lie racks, and digroups. Journal of Lie Theory, 17:99–114, 2007.
- C. Laurent-Gengoux and F. Wagemann. Lie rackoids integrating Courant algebroids. Annals of Global Analysis and Geometry, 57(2):225–256, 2020.
- D. Li-Bland and P. Ševera. Integration of exact Courant algebroids. Electronic Research Announcements, 19:58–76, 2011.
- Double field theory for the A/B-models and topological S-duality in generalized geometry. Fortschritte der Physik, 66(11-12):1800069, 2018.
- O. Hohm and B. Zwiebach. Large gauge transformations in double field theory. Journal of High Energy Physics, 2013(2):1–42, 2013.
- A. S. Cattaneo and G. Felder. On the AKSZ formulation of the poisson sigma model. Letters in Mathematical Physics, 56:163–179, 2001.
- P. Ševera and A. Weinstein. Poisson geometry with a 3-form background. Progress of Theoretical Physics Supplement, 144:145–154, 2001.
- The BV action of 3D twisted R-Poisson sigma models. Journal of High Energy Physics, 2022(10):1–32, 2022.
- A. Kotov and T. Strobl. Gauging without initial symmetry. Journal of Geometry and Physics, 99:184–189, 2016.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.