Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Towards an experimental proof of the magnonic Aharonov$-$Casher effect (2312.05113v1)

Published 8 Dec 2023 in cond-mat.mes-hall and cond-mat.other

Abstract: Controlling the phase and amplitude of spin waves in magnetic insulators with an electric field opens the way to fast logic circuits with ultra-low power consumption. One way to achieve such control is to manipulate the magnetization of the medium via magnetoelectric effects. In experiments with magnetostatic spin waves in an yttrium iron garnet film, we have obtained the first evidence of a theoretically predicted phenomenon: The change of the spin-wave phase due to the magnonic Aharonov$-$Casher effect$-$the geometric accumulation of the magnon phase as these quasiparticles propagate through an electric field region.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Magnonics, J. Phys. D: Appl. Phys. 43, 260301 (2010).
  2. G. Csaba, Á. Papp, and W. Porod, Perspectives of using spin waves for computing and signal processing, Phys. Lett. A 381, 1471 (2017).
  3. A. Khitun, M. Bao, and K. L. Wang, Magnonic logic circuits, J. Phys. D: Appl. Phys. 43, 264005 (2010).
  4. M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys. 38, R123 (2005).
  5. F. Matsukura, Y. Tokura, and H. Ohno, Control of magnetism by electric fields, Nat. Nanotechnol. 10, 209 (2015).
  6. A. A. Serga, A. V. Chumak, and B. Hillebrands, YIG magnonics, J. Phys. D: Appl. Phys. 43, 264002 (2010).
  7. Y. Aharonov and A. Casher, Topological quantum effects for neutral particles, Phys. Rev. Lett. 53, 319 (1984).
  8. T. Liu and G. Vignale, Electric control of spin currents and spin-wave logic, Phys. Rev. Lett. 106, 247203 (2011).
  9. K. Nakata, P. Simon, and D. Loss, Spin currents and magnon dynamics in insulating magnets, J. Phys. D: Appl. Phys. 50, 114004 (2017).
  10. V. N. Krivoruchko, A. S. Savchenko, and V. V. Kruglyak, Electric-field control of spin-wave power flow and caustics in thin magnetic films, Phys. Rev. B 98, 024427 (2018).
  11. A. Savchenko and V. Krivoruchko, Electric-field control of nonreciprocity of spin wave excitation in ferromagnetic nanostripes, J. Magn. Magn. Mater. 474, 9 (2019).
  12. V. N. Krivoruchko, Aharonov–Casher effect and electric field control of magnetization dynamics, Low Temp. Phys. 46, 820 (2020).
  13. Z. Cao, X. Yu, and R. Han, Quantum phase and persistent magnetic moment current and Aharonov–Casher effect in a mesoscopic ferromagnetic ring, Phys. Rev. B 56, 5077 (1997).
  14. K. Nakata, P. Simon, and D. Loss, Magnon transport through microwave pumping, Phys. Rev. B 92, 014422 (2015).
  15. E. Ascher, Higher-order magneto-electric effects, Philos. Mag. 17, 149 (1968).
  16. J.-P. Rivera, A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics, Eur. Phys. J. B 71, 299 (2009).
  17. M. J. Cardwell, Measurements of the magnetic field dependent electric susceptibility of yttrium iron garnet, Philos. Mag. 20, 1087 (1969).
  18. B. B. Krichevtsov, V. V. Pavlov, and R. V. Pisarev, Giant linear magnetoelectric effect in garnet ferrite films, J. Exp. Theor. Phys. Lett. 49, 535 (1989).
  19. D. D. Stancil and A. Prabhakar, Spin Waves (Springer, New York, 2009).
  20. H. Szymczak and N. Tsuya, Phenomenological theory of magnetostriction and growth-induced anisotropy in garnet films, Phys. Status Solidi A 54, 117 (1979).
  21. V. Krivoruchko and A. Savchenko, Electric field control of spin-wave refraction in thin ferromagnetic film, in IEEE 9th Int. Conf. Nanomater.: Appl. & Prop. (NAP) (IEEE, 2019).
  22. A. Savchenko and V. Krivoruchko, Electric field control of spin-wave propagation in ferromagnetic nanostripe, in IEEE 8th Int. Conf. Nanomater.: Appl. & Prop. (NAP) (IEEE, 2018).
  23. K. Nakata, S. K. Kim, and S. Takayoshi, Laser control of magnonic topological phases in antiferromagnets, Phys. Rev. B 100, 014421 (2019).
  24. K. Nakata, J. Klinovaja, and D. Loss, Magnonic quantum Hall effect and Wiedemann-Franz law, Phys. Rev. B 95, 125429 (2017b).
  25. S. A. Owerre, Magnonic Floquet quantum spin Hall insulator in bilayer collinear antiferromagnets, Sci. Rep. 9, 7197 (2019).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com