Tied--boxed algebras (2312.04844v1)
Abstract: We introduce two new algebras that we call \emph{tied--boxed Hecke algebra} and \emph{tied--boxed Temperley--Lieb algebra}. The first one is a subalgebra of the algebra of braids and ties introduced by Aicardi and Juyumaya, and the second one is a tied--version of the well known Temperley--Lieb algebra. We study their representation theory and give cellular bases for them. Furthermore, we explore a strong connection between the tied--boxed Temperley--Lieb algebra and the so--called partition Temperley--Lieb algebra given by Juyumaya. Also, we show that both structures inherit diagrammatic interpretations from a new class of monoids that we call \emph{boxed ramified monoids}. Additionally, we give presentations for the singular part of the ramified symmetric monoid and for the boxed ramified monoid associated to the Brauer monoid.
- Ramified inverse and planar monoids. To appear in Mosc Math J, 2022. URL: https://arxiv.org/abs/2210.17461.
- Brauer and Jones tied monoids. J Pure Appl Algebra, 227(1):107161, 1 2023.
- F. Aicardi and J. Juyumaya. An algebra involving braids and ties. ICTP Preprint IC/2000/179, 2000.
- F. Aicardi and J. Juyumaya. Markov trace on the algebra of braids and ties. Mosc Math J, 16(3):397–431, 2016.
- F. Aicardi and J. Juyumaya. Tied links. J Knot Theor Ramif, 25(9):1641001, 2016.
- F. Aicardi and J. Juyumaya. Kauffman type invariants for tied links. Math Z, 289(1–2):567–591, 6 2018.
- F. Aicardi and J. Juyumaya. Two parameters bt-algebra and invariants for links and tied links. Arnold Math J, 6:131–148, 4 2020.
- F. Aicardi and J. Juyumaya. Tied links and invariants for singular links. Adv Math, 381:107629, 4 2021.
- Tied temperley–lieb algebras. In preparation, 2023.
- J. Alexander. A lemma on systems of knotted curves. Proc Natl Acad Sci USA, 9(3):93–95, 3 1923.
- D. Arcis and J. Juyumaya. Tied monoids. Semigroup Forum, 103(1–2):356–394, 10 2021.
- E. Artin. Theorie der Zöpfe. Abh Math Sem Hamburg, 4(1):47–72, 12 1925.
- E. Banjo. The generic representation theory of the Juyumaya algebra of braids and ties. Algebr Represent Th, 16:1385–1395, 10 2013.
- R. Brauer. On algebras which are connected with the semisimple continuous groups. Ann Math, 38(4):857–872, 10 1937.
- Reidemeister-Schreier type rewriting for semigroups. Semigroup Forum, 51(1):47–62, 12 1995.
- M. Chlouveraki and L. Poulan d’Andecy. Representation theory of the Yokonuma–Hecke algebra. Adv Math, 259:134–172, 7 2014.
- M. Chlouveraki and G. Pouchin. Representations of the framisation of the Temperley–Lieb algebra. In F. Callegaro, G. Carnovale, F. Caselli, C. De Concini, and A. De Sole, editors, Perspectives in Lie Theory, volume 19 of Springer INdAM, chapter 5, pages 253–265. Springer International, Cham, Switzerland, 2017.
- I. Diamantis. Tied links in various topological settings. J Knot Theor Ramif, 30(7):2150046, 6 2021.
- J. Espinoza and S. Ryom-Hansen. Cell structures for the Yokonuma–Hecke algebra and the algebra of braids and ties. J Pure Appl Algebra, 222(11):3675–3720, 11 2018.
- D. FitzGerald. A presentation for the monoid of uniform block permutations. B Aust Math Soc, 68(2):317–324, 10 2003.
- M. Flores. A braids and ties algebra of type B𝐵Bitalic_B. J Pure Appl Algebra, 224(1):1–32, 1 2020.
- M. Flores. Tied links in the solid torus. J Knot Theor Ramif, 30(1):2150006, 1 2021.
- F. Garside. The braid group and other groups. Q J Math, 20(1):235–254, 1 1969.
- T. Geetha and F. Goodman. Cellularity of wreath product algebras and a𝑎aitalic_a-Brauer algebras. J Algebra, 389:151–190, 9 2013.
- J. Graham and G. Lehrer. Cellular algebras. Invent Math, 123:1–34, 12 1996.
- J. Graham and G. Lehrer. Cellular algebras and diagram algebras in representation theory. Adv Stu P M, 40:141–173, 1 2004.
- C. Greenl. On the Möbius algebra of a partially ordered set. Adv Math, 10(2):177–187, 4 1973.
- M. Härterich. Murphy bases of generalized Temperley-Lieb algebras. Arch Math, 26:337–345, 5 1999.
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Founded in 1964 by N. Sloane. URL: https://oeis.org/.
- N. Iwahori. On the structure of a Hecke ring of a Chevalley group over a finite field. J Fac Sci U Tokyo 1, 10(2):215–236, 3 1964. URL: https://repository.dl.itc.u-tokyo.ac.jp/records/39909.
- V. Jones. Hecke algebra representations of braid groups and link polynomials. Ann Math, 126(2):335–388, 9 1987.
- V. Jones. The potts model and the symmetric group. pages 259–267. World Scientific Publishing Co. Pte. Ltd., 9 1994. Subfactors: Proceedings of theTaniguchi Symposium on Operator Algebras, Kyuzeso, 1993.
- J. Juyumaya. Sur les nouveaux générateurs de l’algèbre de Hecke H(G,U,1)𝐻𝐺𝑈1{H}({G},{U},1)italic_H ( italic_G , italic_U , 1 ). J Algebra, 204(1):49–68, 6 1998.
- J. Juyumaya. Another algebra from the Yokonuma-Hecke algebra. ICTP Preprint IC/1999/160, 1999.
- J. Juyumaya. Markov trace on the Yokonuma–Hecke algebra. J Knot Theor Ramif, 13(1):25–39, 2 2004.
- J. Juyumaya. A partition Temperley–Lieb algebra. Preprint, 4 2013. URL: https://arxiv.org/abs/1304.5158.
- J. Juyumaya and S. Kannan. Braid relations in the Yokonuma–Hecke algebra. J Algebra, 239(1):272–297, 5 2001.
- L. Kauffman. An invariant of regular isotopy. T Am Math Soc, 318(2):417–471, 4 1990.
- M. Kosuda. Characterization for the party algebras. Ryukyu Math J, 13(2):7–22, 12 2000.
- M. Kosuda. Party algebra and construction of its irreducible representations. Tempe, Arizona, 5 2001. The 13th International Conference on Formal Power Series and Algebraic Combinatorics.
- G. Kudryavtseva and V. Mazorchuk. On presentations of Brauer-type monoids. Cent Eur J Math, 4(3):403–434, 9 2006.
- I. Marin. Lattice extensions of Hecke algebras. Journal of Algebra, 503:104–120, 6 2018.
- P. Martin. Representations of graph Temperley-Lieb algebras. Publ Res I Math Sci, 26:485–503, 1990.
- P. Martin. Temperley-Lieb algebras for nonplanar statistical mechanics – the partition algebra construction. J Knot Theor Ramif, 3(1):51–82, 1994.
- P. Martin. Representation theory of a small ramified partition algebra. pages 269–286. World Scientific Publishing Co Pte Ltd, 2011. New Trends in Quantum Integrable System: Proceedings of the Infinite Analysis 09, Kyoto, Japan, 27–31 July 2009.
- P. Martin and A. Elgamal. Ramified partition algebras. Math Z, 246:473–500, 3 2004.
- A. Mathas. Iwahori–Hecke algebras and Schur algebras of the Symmetric Group, volume 15 of University Lecture Series. American Mathematical Society, Providence, Rhode Island, 1999.
- H. Matsumoto. Générateurs et relations des groupes de Weyl généralisés. C. R. Acad. Sci. Paris Ser I, 258:3419–3422, 1964.
- G. Murphy. The representations of Hecke algebras of type Ansubscript𝐴𝑛{A}_{n}italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. J Algebra, 173(1):97–121, 4 1995.
- V. Reiner. Non-crossing partitions for classical reflection groups. Discrete Math, (1–3):195–222, 12 1997.
- N. Ruškuc. Semigroup Presentations. PhD thesis, University of St. Andrews, Scotland, 4 1995.
- S. Ryom-Hansen. On the representation theory of an algebra of braids and ties. J Algebr Comb, 33(1):57–79, 2 2011.
- S. Ryom-Hansen. On the annihilator ideal in the bt-algebra of tensor space. J Pure Appl Algebra, 226(8):107028, 8 2022.
- L. Solomon. The Burnside algebra of a finite group. J Comb Theory, 2(4):603–615, 6 1967.
- H. Temperley and E. Lieb. Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc R Soc Lon Ser-A, 322(1549):251–280, 4 1971.
- T. Yokonuma. Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini. C. R. Acad. Sci. Paris Ser I, 264:344–347, 1967.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.