Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees (2312.02734v2)

Published 5 Dec 2023 in eess.SY, cs.SY, and math.OC

Abstract: We address the challenge of dimension reduction in the discrete-time optimal control problem which is solved repeatedly online within the framework of model predictive control. Our study demonstrates that a reduced-order approach, aimed at identifying a suboptimal solution within a low-dimensional subspace, retains the stability and recursive feasibility characteristics of the original problem. We present a necessary and sufficient condition for ensuring initial feasibility, which is seamlessly integrated into the subspace design process. Additionally, we employ techniques from optimization on Riemannian manifolds to develop a subspace that efficiently represents a collection of pre-specified high-dimensional data points, all while adhering to the initial admissibility constraint.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. R. Findeisen and F. Allgöwer, “An Introduction to Nonlinear Model Predictive Control,” in 21st Benelux Meeting on Systems and Control, pp. 119–141, 2002.
  2. L. Grüne and J. Pannek, Nonlinear Model Predictive Control : Theory and Algorithms. Communications and Control Engineering, Springer, 2. ed., 2017.
  3. Cambridge University Press, 2017.
  4. R. Cagienard, P. Grieder, E. Kerrigan, and M. Morari, “Move blocking strategies in receding horizon control,” J. Proc. Cont., vol. 17, no. 6, pp. 563–570, 2007.
  5. R. C. Shekhar and C. Manzie, “Optimal move blocking strategies for model predictive control,” Automatica, vol. 61, pp. 27–34, 2015.
  6. G. Pan and T. Faulwasser, “NMPC in active subspaces: Dimensionality reduction with recursive feasibility guarantees,” Automatica, vol. 147, p. 110708, 2023.
  7. A. Bemporad and G. Cimini, “Variable elimination in model predictive control based on K-SVD and QR factorization,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 782–797, 2021.
  8. O. J. Rojas, G. C. Goodwin, M. M. Serón, and A. Feuer, “An SVD based strategy for receding horizon control of input constrained linear systems,” Int. J. Rob. Cont., vol. 14, no. 13-14, pp. 1207–1226, 2004.
  9. G. Goebel and F. Allgöwer, “Semi-explicit mpc based on subspace clustering,” Automatica, vol. 83, pp. 309–316, 2017.
  10. R. Schurig, A. Himmel, and R. Findeisen, “Toward grassmannian dimensionality reduction in mpc,” IEEE Control Systems Letters, vol. 7, pp. 3187–3192, 2023.
  11. Princeton, NJ: Princeton University Press, 2008.
  12. N. Boumal, An introduction to optimization on smooth manifolds. Cambridge University Press, 2023.
  13. C. Liu and N. Boumal, “Simple algorithms for optimization on riemannian manifolds with constraints,” Applied Mathematics & Optimization, vol. 82, pp. 949–981, 2020.
  14. Cambridge University Press, 2019.
  15. A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with orthogonality constraints,” SIAM J. Matrix Anal.& Appl., vol. 20, no. 2, pp. 303–353, 1998.
  16. T. Bendokat, R. Zimmermann, and P.-A. Absil, “A Grassmann manifold handbook: Basic geometry and computational aspects,” arXiv preprint arXiv:2011.13699, 2020.
  17. S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
  18. N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a Matlab toolbox for optimization on manifolds,” Journal of Machine Learning Research, vol. 15, no. 42, pp. 1455–1459, 2014.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.