Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Free Likelihood-Informed Dimension Reduction of Bayesian Inverse Problems (2102.13245v1)

Published 26 Feb 2021 in stat.CO, cs.NA, math.NA, and stat.ME

Abstract: Identifying a low-dimensional informed parameter subspace offers a viable path to alleviating the dimensionality challenge in the sampled-based solution to large-scale Bayesian inverse problems. This paper introduces a novel gradient-based dimension reduction method in which the informed subspace does not depend on the data. This permits an online-offline computational strategy where the expensive low-dimensional structure of the problem is detected in an offline phase, meaning before observing the data. This strategy is particularly relevant for multiple inversion problems as the same informed subspace can be reused. The proposed approach allows controlling the approximation error (in expectation over the data) of the posterior distribution. We also present sampling strategies that exploit the informed subspace to draw efficiently samples from the exact posterior distribution. The method is successfully illustrated on two numerical examples: a PDE-based inverse problem with a Gaussian process prior and a tomography problem with Poisson data and a Besov-$\mathcal{B}2_{11}$ prior.

Citations (19)

Summary

We haven't generated a summary for this paper yet.