Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical ML Codebook Design for Extreme MIMO Beam Management (2312.02178v1)

Published 24 Nov 2023 in eess.SP, cs.IT, cs.LG, cs.SY, eess.SY, and math.IT

Abstract: Beam management is a strategy to unify beamforming and channel state information (CSI) acquisition with large antenna arrays in 5G. Codebooks serve multiple uses in beam management including beamforming reference signals, CSI reporting, and analog beam training. In this paper, we propose and evaluate a machine learning-refined codebook design process for extremely large multiple-input multiple-output (X-MIMO) systems. We propose a neural network and beam selection strategy to design the initial access and refinement codebooks using end-to-end learning from beamspace representations. The algorithm, called Extreme-Beam Management (X-BM), can significantly improve the performance of extremely large arrays as envisioned for 6G and capture realistic wireless and physical layer aspects. Our results show an 8dB improvement in initial access and overall effective spectral efficiency improvements compared to traditional codebook methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. R. M. Dreifuerst and R. W. Heath, “Massive MIMO in 5G: How beamforming, codebooks, and feedback enable larger arrays,” accepted for publication in IEEE Commun. Mag, 2023.
  2. H. Holma, H. Viswanathan, and P. Mogensen, “Extreme massive MIMO for macro cell capacity boost in 5G-Advanced and 6G,” Nokia Bell Labs, Tech. Rep., 2021.
  3. R. W. Heath et al., “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
  4. Y. Heng et al., “Six key challenges for beam management in 5.5G and 6G systems,” IEEE Commun. Mag., vol. 59, no. 7, pp. 74–79, Jul. 2021.
  5. M. Giordani et al., “A tutorial on beam management for 3GPP NR at mmwave frequencies,” IEEE Commun. Surv. Tutorials, vol. 21, no. 1, pp. 173–196, Jan. 2019.
  6. T. Wang et al., “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun., vol. 14, no. 11, pp. 92–111, 2017.
  7. C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and Wireless Networking: A Survey,” IEEE Commun. Surv. Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.
  8. X. Lin, “An overview of the 3GPP study on artificial intelligence for 5G New Radio,” aug 2023. [Online]. Available: https://arxiv.org/abs/2308.05315v1http://arxiv.org/abs/2308.05315
  9. B. Li et al., “On the efficient beam-forming training for 60GHz wireless personal area networks,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 504–515, 2013.
  10. V. Va et al., “Inverse multipath fingerprinting for millimeter wave V2I beam alignment,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4042–4058, May 2018.
  11. Y. Wang, N. J. Myers, N. González-Prelcic, and R. W. Heath, “Site-specific online compressive beam codebook learning in mmWave vehicular communication,” IEEE Trans. Wirel. Commun., pp. 1–14, 2021.
  12. Q. Xue et al., “Beam management in ultra-dense mmWave network via federated reinforcement learning: An intelligent and secure approach,” IEEE Trans. Cogn. Commun. Netw., 2022.
  13. J. Yang, W. Zhu, and M. Tao, “Deep learning for hierarchical beam alignment in mmWave communication systems,” in Proc. of the IEEE Global Communications Conference, 2022.
  14. J. Yang, W. Zhu, M. Tao, and S. Sun, “Hierarchical Beam Alignment for Millimeter-Wave Communication Systems: A Deep Learning Approach,” IEEE Trans. Wirel. Commun., pp. 1–1, sep 2023.
  15. R. Shafin et al., “Self-tuning sectorization: Deep reinforcement learning meets broadcast beam optimization,” IEEE Trans. Wirel. Commun., vol. 19, no. 6, pp. 4038–4053, Jun. 2020.
  16. W. Xia et al., “A deep learning framework for optimization of MISO downlink beamforming,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1866–1880, Mar. 2020.
  17. Y. Heng, J. Mo, and J. G. Andrews, “Learning site-specific probing beams for fast mmWave beam alignment,” IEEE Trans. Wirel. Commun., vol. 21, no. 8, pp. 5785–5800, 2022.
  18. R. M. Dreifuerst, R. W. Heath, and A. Yazdan, “Massive MIMO beam management in sub-6 GHz 5G NR,” in Proc. of the IEEE Veh. Technol. Conf., 2022, pp. 1–5.
  19. J. Wang et al., “Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 8, pp. 1390–1399, 2009.
  20. A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Top. Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.
  21. Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3380–3392, 2016.
  22. C. K. Wen, W. T. Shih, and S. Jin, “Deep learning for massive MIMO CSI feedback,” IEEE Wirel. Commun. Lett., vol. 7, no. 5, pp. 748–751, 2018.
  23. J. Kim, H. Lee, and S.-H. Park, “Learning robust beamforming for MISO downlink systems,” IEEE Communications Letters, vol. 25, no. 6, pp. 1916–1920, 2021.
  24. M. Chen et al., “Deep learning-based implicit CSI feedback in massive MIMO,” IEEE Trans. Commun., vol. 70, pp. 935–950, Dec. 2022.
  25. H. Xiao et al., “Knowledge-driven Meta-learning for CSI Feedback,” oct 2023. [Online]. Available: https://arxiv.org/abs/2310.15548v2
  26. G. Morozov, A. Davydov, and V. Sergeev, “Enhanced CSI feedback for FD-MIMO with beamformed CSI-RS in LTE-A Pro systems,” in Proc. of the IEEE Veh. Technol. Conf., Jul. 2016, pp. 1–5.
  27. R. M. Dreifuerst and R. W. Heath, “Machine learning codebook design for initial access and CSI type-II feedback in sub-6GHz 5G NR,” Accepted for publication in IEEE Trans. Wirel. Comm., 2023. [Online]. Available: https://arxiv.org/abs/2303.02850
  28. M. Alouzi, F. Al-Kamali, C. D’amours, and F. Chan, “Direct conversion of hybrid precoding and combining from full array architecture to subarray architecture for mmWave MIMO systems,” IEEE Access, vol. 11, pp. 35 457–35 468, 2023.
  29. Q. Xue et al., “A survey of beam management for mmWave and THz communications towards 6G,” aug 2023. [Online]. Available: https://arxiv.org/abs/2308.02135v1http://arxiv.org/abs/2308.02135
  30. J. Hoydis et al., “Sionna: An open-source library for next-generation physical layer research,” arXiv preprint, Mar. 2022.
  31. A. Singh and S. Joshi, “A survey on hybrid beamforming in mmWave massive MIMO system,” J. Sci. Res., vol. 65, no. 01, pp. 201–213, 2021.
  32. X. Wu, D. Liu, and F. Yin, “Hybrid Beamforming for Multi-User Massive MIMO Systems,” IEEE Trans. Commun., vol. 66, no. 9, pp. 3879–3891, Sep. 2018.
  33. Y. Ren, S. Yoo, and A. Hoisie, “Performance analysis of deep learning workloads on leading-edge systems,” in 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), 2019, pp. 103–113.
  34. V. J. Reddi et al., “MLPerf inference benchmark,” 2020, v3.1 updated Aug. 2023.
  35. Z. Qin and H. Yin, “A review of codebooks for CSI feedback in 5G New Radio and beyond,” 2023. [Online]. Available: http://arxiv.org/abs/2302.09222
  36. R. M. Dreifuerst and R. W. J. Heath, “CSI type-II codebook of codebooks,” in to be published in Proc. of IEEE Work. Signal Process. Adv. Wirel. Commun. SPAWC, 2023.
  37. A. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp. 2563–2579, 2002.
  38. A. Felix et al., “Ofdm-autoencoder for end-to-end learning of communications systems,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5.
  39. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference on Learning Representations, Dec. 2014.
  40. S. Ben-David et al., “A theory of learning from different domains,” Machine Learning, vol. 79, pp. 151–175, 2010. [Online]. Available: http://www.springerlink.com/content/q6qk230685577n52/
Citations (2)

Summary

We haven't generated a summary for this paper yet.