Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Codebook Design for Network Beam Management (2403.03053v1)

Published 5 Mar 2024 in eess.SP, cs.AI, cs.IT, cs.NI, cs.SY, eess.SY, and math.IT

Abstract: Obtaining accurate and timely channel state information (CSI) is a fundamental challenge for large antenna systems. Mobile systems like 5G use a beam management framework that joins the initial access, beamforming, CSI acquisition, and data transmission. The design of codebooks for these stages, however, is challenging due to their interrelationships, varying array sizes, and site-specific channel and user distributions. Furthermore, beam management is often focused on single-sector operations while ignoring the overarching network- and system-level optimization. In this paper, we proposed an end-to-end learned codebook design algorithm, network beamspace learning (NBL), that captures and optimizes codebooks to mitigate interference while maximizing the achievable performance with extremely large hybrid arrays. The proposed algorithm requires limited shared information yet designs codebooks that outperform traditional codebooks by over 10dB in beam alignment and achieve more than 25% improvements in network spectral efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. R. M. Dreifuerst and R. W. Heath, “Massive MIMO in 5G: How beamforming, codebooks, and feedback enable larger arrays,” IEEE Commun. Mag., vol. 61, no. 12, pp. 18–23, Dec. 2023.
  2. H. Holma, H. Viswanathan, and P. Mogensen, “Extreme massive MIMO for macro cell capacity boost in 5G-Advanced and 6G,” Nokia Bell Labs, Tech. Rep., 2021.
  3. R. W. Heath et al., “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
  4. S. Hamid et al., “Hybrid Beamforming in Massive MIMO for Next-Generation Communication Technology,” Sensors, vol. 23, no. 16, p. 7294, Aug. 2023.
  5. M. Giordani et al., “A tutorial on beam management for 3GPP NR at mmwave frequencies,” IEEE Commun. Surv. Tutorials, vol. 21, no. 1, pp. 173–196, Jan. 2019.
  6. R. M. Dreifuerst and R. W. Heath, “Hierarchical ML codebook design for extreme MIMO beam management,” 2023. [Online]. Available: https://arxiv.org/abs/2312.02178
  7. R. M. Dreifuerst, R. W. Heath, and A. Yazdan, “Massive MIMO beam management in sub-6 GHz 5G NR,” in Proc. of the IEEE Veh. Technol. Conf., Jun. 2022, pp. 1–5.
  8. V. Va, J. Choi, and R. W. Heath, “The Impact of Beamwidth on Temporal Channel Variation in Vehicular Channels and Its Implications,” IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 5014–5029, Jun. 2017.
  9. Z. Qin and H. Yin, “A review of codebooks for CSI feedback in 5G New Radio and beyond,” 2023. [Online]. Available: http://arxiv.org/abs/2302.09222
  10. X. Lin, “An overview of the 3GPP study on artificial intelligence for 5G New Radio,” aug 2023. [Online]. Available: https://arxiv.org/abs/2308.05315v1http://arxiv.org/abs/2308.05315
  11. 3GPP, “WI summary for WI Core part: NR MIMO evolution for downlink and uplink,” 2023.
  12. C. Jiang et al., “Machine Learning Paradigms for Next-Generation Wireless Networks,” IEEE Wirel. Commun., vol. 24, pp. 98–105, Apr. 2017.
  13. C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and Wireless Networking: A Survey,” IEEE Commun. Surv. Tutorials, vol. 21, no. 3, pp. 2224–2287, Mar. 2019.
  14. Y. Heng et al., “Six key challenges for beam management in 5.5G and 6G systems,” IEEE Commun. Mag., vol. 59, no. 7, pp. 74–79, Jul. 2021.
  15. R. Shafin et al., “Self-tuning sectorization: Deep reinforcement learning meets broadcast beam optimization,” IEEE Trans. Wirel. Commun., vol. 19, no. 6, pp. 4038–4053, Jun. 2020.
  16. Y. Heng, J. Mo, and J. G. Andrews, “Learning site-specific probing beams for fast mmWave beam alignment,” IEEE Trans. Wirel. Commun., vol. 21, no. 8, pp. 5785–5800, Jan. 2022.
  17. N. Turan et al., “Limited Feedback on Measurements: Sharing a Codebook or a Generative Model?” 2024. [Online]. Available: http://arxiv.org/abs/2401.01721
  18. W. Chen et al., “CSI-PPPNet: A One-Sided One-for-All Deep Learning Framework for Massive MIMO CSI Feedback,” IEEE Trans. Wirel. Commun., pp. 1–15, Dec. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10367817/
  19. A. Lee et al., “Practical Denoising Autoencoder for CSI Feedback Without Clean Target in Massive MIMO Networks,” IEEE Wirel. Commun. Lett., vol. 13, no. 2, pp. 525–529, Nov. 2024.
  20. K. Ma et al., “Improving the performance of R17 Type-II codebook with deep learning,” pp. 1–15, 2023. [Online]. Available: https://arxiv.org/abs/2310.05962
  21. J. Wang et al., “Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1390–1399, Sep. 2009.
  22. A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Top. Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.
  23. G. Morozov, A. Davydov, and V. Sergeev, “Enhanced CSI feedback for FD-MIMO with beamformed CSI-RS in LTE-A Pro systems,” in Proc. of the IEEE Veh. Technol. Conf., Jul. 2016, pp. 1–5.
  24. J. Yang, W. Zhu, M. Tao, and S. Sun, “Hierarchical beam alignment for millimeter-wave communication systems: A deep learning approach,” IEEE Trans. Wireless Commun., pp. 1–14, Sep. 2023.
  25. C. K. Wen, W. T. Shih, and S. Jin, “Deep learning for massive MIMO CSI feedback,” IEEE Wirel. Commun. Lett., vol. 7, no. 5, pp. 748–751, Oct. 2018.
  26. M. Chen et al., “Deep learning-based implicit CSI feedback in massive MIMO,” IEEE Trans. Commun., vol. 70, pp. 935–950, Dec. 2022.
  27. H. Xiao et al., “Knowledge-driven Meta-learning for CSI feedback,” oct 2023. [Online]. Available: https://arxiv.org/abs/2310.15548v2
  28. E. Becirovic, E. Bjornson, and E. G. Larsson, “Combining reciprocity and CSI feedback in MIMO systems,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 10 065–10 080, May 2022.
  29. J. Yang, W. Zhu, and M. Tao, “Deep learning for hierarchical beam alignment in mmWave communication systems,” in Proc. of the IEEE Global Communications Conference, Dec. 2022.
  30. G. H. Sim et al., “An online context-aware machine learning algorithm for 5G mmWave vehicular communications,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2487–2500, Dec. 2018.
  31. J. Choi et al., “Millimeter-wave vehicular communication to support massive automotive sensing,” IEEE Communications Magazine, vol. 54, no. 12, pp. 160–167, Dec. 2016.
  32. V. Va et al., “Inverse multipath fingerprinting for millimeter wave V2I beam alignment,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4042–4058, May 2018.
  33. M. Hussain and N. Michelusi, “Learning and adaptation for millimeter-wave beam tracking and training: A dual timescale variational framework,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 37–53, Jan. 2022.
  34. M. Rebato, M. Polese, and M. Zorzi, “Multi-sector and multi-panel performance in 5G mmWave cellular networks,” in IEEE GLOBECOM, Dec. 2018, pp. 1–6.
  35. K. Vuckovic et al., “PARAMOUNT: Towards generalizable deeP leARning for mmwAve beaM selectiOn using sUb-6GHz chaNnel measuremenTs,” IEEE Trans. Wireless Commun., pp. 1–16, Oct. 2023.
  36. P. Zhou et al., “Deep learning-based beam management and interference coordination in dense mmWave networks,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 592–603, Jan. 2019.
  37. Y. Zhang and A. Alkhateeb, “Decentralized Interference-Aware Codebook Learning in Millimeter Wave MIMO Systems.” [Online]. Available: https://arxiv.org/abs/2401.07479v1
  38. R. M. Dreifuerst and R. W. Heath, “Machine learning codebook design for initial access and CSI type-II feedback in sub-6GHz 5G NR,” IEEE Trans. Wireless Commun., pp. 1–15, Nov. 2023.
  39. M. Alouzi, F. Al-Kamali, C. D’amours, and F. Chan, “Direct conversion of hybrid precoding and combining from full array architecture to subarray architecture for mmWave MIMO systems,” IEEE Access, vol. 11, pp. 35 457–35 468, Apr. 2023.
  40. A. Singh and S. Joshi, “A survey on hybrid beamforming in mmWave massive MIMO system,” J. Sci. Res., vol. 65, no. 01, pp. 201–213, 2021.
  41. X. Wu, D. Liu, and F. Yin, “Hybrid Beamforming for Multi-User Massive MIMO Systems,” IEEE Trans. Commun., vol. 66, no. 9, pp. 3879–3891, Sep. 2018.
  42. V. Raghavan et al., “Beamforming Tradeoffs for Initial UE Discovery in Millimeter-Wave MIMO Systems,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 543–559, Apr. 2016.
  43. A. Felix et al., “OFDM-autoencoder for end-to-end learning of communications systems,” in IEEE Work. Signal Process. Adv. Wirel. Commun. SPAWC, Jun. 2018.
  44. J. Hoydis et al., “Sionna: An open-source library for next-generation physical layer research,” arXiv preprint, Mar. 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com