Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal Data Generation in Multi-Dimensional Parameter Spaces, using Bayesian Optimization (2312.02012v1)

Published 4 Dec 2023 in cs.LG, physics.app-ph, and physics.comp-ph

Abstract: Acquiring a substantial number of data points for training accurate ML models is a big challenge in scientific fields where data collection is resource-intensive. Here, we propose a novel approach for constructing a minimal yet highly informative database for training ML models in complex multi-dimensional parameter spaces. To achieve this, we mimic the underlying relation between the output and input parameters using Gaussian process regression (GPR). Using a set of known data, GPR provides predictive means and standard deviation for the unknown data. Given the predicted standard deviation by GPR, we select data points using Bayesian optimization to obtain an efficient database for training ML models. We compare the performance of ML models trained on databases obtained through this method, with databases obtained using traditional approaches. Our results demonstrate that the ML models trained on the database obtained using Bayesian optimization approach consistently outperform the other two databases, achieving high accuracy with a significantly smaller number of data points. Our work contributes to the resource-efficient collection of data in high-dimensional complex parameter spaces, to achieve high precision machine learning predictions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. Venketeswaran, N. Lalam, J. Wuenschell, P. R. Ohodnicki Jr, M. Badar, K. P. Chen, P. Lu, Y. Duan, B. Chorpening, and M. Buric, “Recent advances in machine learning for fiber optic sensor applications,” \JournalTitleAdvanced Intelligent Systems 4, 2100067 (2022).
  2. J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey, “Scientific machine learning benchmarks,” \JournalTitleNature Reviews Physics 4, 413–420 (2022).
  3. K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” \JournalTitleNanophotonics 8, 339–366 (2019).
  4. C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, “Deep learning for accelerated all-dielectric metasurface design,” \JournalTitleOptics express 27, 27523–27535 (2019).
  5. W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” \JournalTitleNature Photonics 15, 77–90 (2021).
  6. A. M. Hammond and R. M. Camacho, “Designing integrated photonic devices using artificial neural networks,” \JournalTitleOptics express 27, 29620–29638 (2019).
  7. K. Dey, V. Nikhil, P. R. Chaudhuri, and S. Roy, “Demonstration of a fast-training feed-forward machine learning algorithm for studying key optical properties of fbg and predicting precisely the output spectrum,” \JournalTitleOptical and Quantum Electronics 55, 16 (2023).
  8. R. S. Hegde, “Deep learning: a new tool for photonic nanostructure design,” \JournalTitleNanoscale Advances 2, 1007–1023 (2020).
  9. T. W. Hughes, M. Minkov, Y. Shi, and S. Fan, “Training of photonic neural networks through in situ backpropagation and gradient measurement,” \JournalTitleOptica 5, 864–871 (2018).
  10. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the loop: A review of bayesian optimization,” \JournalTitleProceedings of the IEEE 104, 148–175 (2015).
  11. G. W. Burr and A. Farjadpour, “Balancing accuracy against computation time: 3d fdtd for nanophotonics device optimization,” in Photonic Crystal Materials and Devices III, vol. 5733 (SPIE, 2005), pp. 336–347.
  12. M. Mahani, Y. Rahimof, S. Wenzel, I. Nechepurenko, and A. Wicht, “Data-efficient machine learning algorithms for the design of surface bragg gratings,” \JournalTitleACS Applied Optical Materials 1, 1474–1484 (2023).
  13. F. Teixeira, C. Sarris, Y. Zhang, D.-Y. Na, J.-P. Berenger, Y. Su, M. Okoniewski, W. Chew, V. Backman, and J. Simpson, “Finite-difference time-domain methods,” \JournalTitleNature Reviews Methods Primers 3, 75 (2023).
  14. M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, , and R. Holzwarth, “Space-borne frequency comb metrology,” \JournalTitleOptica 3, 1381–1387 (2016).
  15. D. Becker, M. D. Lachmann, S. T. Seidel, H. Ahlers, A. N. Dinkelaker, J. Grosse, O. Hellmig, H. Müntinga, V. Schkolnik, T. Wendrich, A. Wenzlawski, B. Weps, R. Corgier, T. Franz, N. Gaaloul, W. Herr, D. Lüdtke, M. Popp, S. Amri, H. Duncker, M. Erbe, A. Kohfeldt, A. Kubelka-Lange, C. Braxmaier, E. Charron, W. Ertmer, M. Krutzik, C. Lämmerzahl, A. Peters, W. P. Schleich, K. Sengstock, R. Walser, A. Wicht, and P. W. . E. M. Rasel, “Space-borne bose–einstein condensation for precision interferometry,” \JournalTitleNature 562, 391–395 (2018).
  16. J. Shemshad, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” \JournalTitleSensors and Actuators B: Chemical 171, 77–92 (2012).
  17. S. Lin, J. Chang, J. Sun, and P. Xu, “Improvement of the detection sensitivity for tunable diode laser absorption spectroscopy: A review,” \JournalTitleFrontiers in Physics 10, 136 (2022).
  18. Y. Jin, L. Gao, J. Chen, C. Wu, J. L. Reno, and S. Kumar, “High power surface emitting terahertz laser with hybrid second-and fourth-order bragg gratings,” \JournalTitleNature communications 9, 1407 (2018).
  19. M. Mahani, I. Nechepurenko, Y. Rahimof, and A. Wicht, “Designing rectangular surface bragg gratings using machine learning models,” in 2023 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), (IEEE, 2023), pp. 69–70.
  20. I. Nechepurenko, Y. Rahimof, M. Mahani, S. Wenzel, and A. Wicht, “Finite-difference time-domain simulations of surface bragg gratings,” in 2023 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), (IEEE, 2023), pp. 3–4.
  21. C. Rasmussen and C. Williams, “Gaussian processes for machine learning.,(mit press: Cambridge, ma),” (2006).
  22. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, (2016), pp. 785–794.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube