Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable AI is Responsible AI: How Explainability Creates Trustworthy and Socially Responsible Artificial Intelligence (2312.01555v1)

Published 4 Dec 2023 in cs.AI, cs.CY, and cs.LG

Abstract: AI has been clearly established as a technology with the potential to revolutionize fields from healthcare to finance - if developed and deployed responsibly. This is the topic of responsible AI, which emphasizes the need to develop trustworthy AI systems that minimize bias, protect privacy, support security, and enhance transparency and accountability. Explainable AI (XAI) has been broadly considered as a building block for responsible AI (RAI), with most of the literature considering it as a solution for improved transparency. This work proposes that XAI and responsible AI are significantly more deeply entwined. In this work, we explore state-of-the-art literature on RAI and XAI technologies. Based on our findings, we demonstrate that XAI can be utilized to ensure fairness, robustness, privacy, security, and transparency in a wide range of contexts. Our findings lead us to conclude that XAI is an essential foundation for every pillar of RAI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Stephanie Baker (1 paper)
  2. Wei Xiang (106 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.