Using non-convex optimization in quantum process tomography: Factored gradient descent is tough to beat (2312.01311v1)
Abstract: We propose a non-convex optimization algorithm, based on the Burer-Monteiro (BM) factorization, for the quantum process tomography problem, in order to estimate a low-rank process matrix $\chi$ for near-unitary quantum gates. In this work, we compare our approach against state of the art convex optimization approaches based on gradient descent. We use a reduced set of initial states and measurement operators that require $2 \cdot 8n$ circuit settings, as well as $\mathcal{O}(4n)$ measurements for an underdetermined setting. We find our algorithm converges faster and achieves higher fidelities than state of the art, both in terms of measurement settings, as well as in terms of noise tolerance, in the cases of depolarizing and Gaussian noise models.
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
- J. Altepeter, E. Jeffrey, and P. Kwiat, “Photonic state tomography,” Advances in Atomic, Molecular, and Optical Physics, vol. 52, pp. 105–159, 2005.
- S. Aaronson, “Shadow tomography of quantum states,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018, pp. 325–338.
- J. B. Altepeter, D. Branning, E. Jeffrey, T. Wei, P. G. Kwiat, R. T. Thew, J. L. O’Brien, M. A. Nielsen, and A. G. White, “Ancilla-assisted quantum process tomography,” Physical Review Letters, vol. 90, no. 19, p. 193601, 2003.
- J. Kunjummen, M. C. Tran, D. Carney, and J. M. Taylor, “Shadow process tomography of quantum channels,” Physical Review A, vol. 107, no. 4, p. 042403, 2023.
- A. Kardashin, A. Uvarov, D. Yudin, and J. Biamonte, “Certified variational quantum algorithms for eigenstate preparation,” Physical Review A, vol. 102, no. 5, p. 052610, 2020.
- J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nature Reviews Physics, vol. 2, no. 7, pp. 382–390, 2020.
- E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized Benchmarking of Quantum Gates,” Physical Review A, vol. 77, no. 1, p. 012307, Jan. 2008, arXiv:0707.0963 [quant-ph]. [Online]. Available: http://arxiv.org/abs/0707.0963
- C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and Approximate Unitary 2-Designs: Constructions and Applications,” Physical Review A, vol. 80, no. 1, p. 012304, Jul. 2009, arXiv:quant-ph/0606161. [Online]. Available: http://arxiv.org/abs/quant-ph/0606161
- A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker, E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and R. Blatt, “Characterizing large-scale quantum computers via cycle benchmarking,” Nature Communications, vol. 10, no. 1, p. 5347, Nov. 2019, arXiv:1902.08543 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1902.08543
- A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi, “Provable quantum state tomography via non-convex methods,” npj Quantum Information, vol. 4, no. 36, 2018.
- D. Gross, Y.-K. Liu, S. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Physical review letters, vol. 105, no. 15, p. 150401, 2010.
- K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Physical Review A, vol. 61, no. 1, p. 010304, 1999.
- M. Paris, G. D’Ariano, and M. Sacchi, “Maximum-likelihood method in quantum estimation,” in AIP Conference Proceedings, vol. 568, no. 1. AIP, 2001, pp. 456–467.
- J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomography,” Phys. Rev. A, vol. 75, p. 042108, 2007. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.75.042108
- D. Gonçalves, M. Gomes-Ruggiero, C. Lavor, O. J. Farias, and P. Ribeiro, “Local solutions of maximum likelihood estimation in quantum state tomography,” Quantum Information & Computation, vol. 12, no. 9-10, pp. 775–790, 2012.
- Y. S. Teo, J. Řeháček, and Z. Hradil, “Informationally incomplete quantum tomography,” Quantum Measurements and Quantum Metrology, vol. 1, 2013. [Online]. Available: https://www.degruyter.com/view/j/qmetro.2013.1.issue/qmetro-2013-0006/qmetro-2013-0006.xml
- J. A. Smolin, J. M. Gambetta, and G. Smith, “Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise,” Physical review letters, vol. 108, no. 7, p. 070502, 2012.
- G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, “Neural-network quantum state tomography,” Nat. Phys., vol. 14, pp. 447–450, May 2018. [Online]. Available: https://doi.org/10.1038/s41567-018-0048-5
- M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, “Efficient quantum state tomography,” Nat. Comm., vol. 1, p. 149, 2010. [Online]. Available: https://doi.org/10.1038/ncomms1147
- B. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand, A. Buyskikh, A. Daley, M. Cramer et al., “Efficient tomography of a quantum many-body system,” Nature Physics, vol. 13, no. 12, pp. 1158–1162, 2017.
- S. T. Flammia and Y.-K. Liu, “Direct fidelity estimation from few pauli measurements,” Physical review letters, vol. 106, no. 23, p. 230501, 2011.
- M. P. da Silva, O. Landon-Cardinal, and D. Poulin, “Practical characterization of quantum devices without tomography,” Physical Review Letters, vol. 107, no. 21, p. 210404, 2011.
- A. Kalev, A. Kyrillidis, and N. M. Linke, “Validating and certifying stabilizer states,” Physical Review A, vol. 99, no. 4, p. 042337, 2019.
- E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout, “Gate Set Tomography,” Quantum, vol. 5, p. 557, Oct. 2021, arXiv:2009.07301 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2009.07301
- R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and P. Maunz, “Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography,” Nature Communications, vol. 8, no. 1, p. 14485, Feb. 2017, arXiv:1605.07674 [physics, physics:quant-ph]. [Online]. Available: http://arxiv.org/abs/1605.07674
- M. Mohseni, A. Rezakhani, and D. Lidar, “Quantum-process tomography: Resource analysis of different strategies,” Physical Review A, vol. 77, no. 3, p. 032322, 2008.
- M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Physical Review A, vol. 68, no. 1, p. 012305, 2003.
- M. Kliesch, R. Kueng, J. Eisert, and D. Gross, “Guaranteed recovery of quantum processes from few measurements,” Quantum, vol. 3, p. 171, 2019.
- I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” vol. 44, no. 11, pp. 2455–2467. [Online]. Available: http://arxiv.org/abs/quant-ph/9610001
- J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” vol. 78, no. 2, pp. 390–393. [Online]. Available: http://arxiv.org/abs/quant-ph/9611013
- T. Surawy-Stepney, J. Kahn, R. Kueng, and M. Guta, “Projected least-squares quantum process tomography.” [Online]. Available: http://arxiv.org/abs/2107.01060
- S. Ahmed, F. Quijandría, and A. F. Kockum, “Gradient-descent quantum process tomography by learning kraus operators.” [Online]. Available: http://arxiv.org/abs/2208.00812
- C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” vol. 90, no. 1, p. 012110. [Online]. Available: http://arxiv.org/abs/1404.2877
- A. Kalev, R. Kosut, and I. Deutsch, “Quantum tomography protocols with positivity are compressed sensing protocols,” NPJ Quantum Information, vol. 1, p. 15018, 2015.
- E. Pelaez, A. Das, P. S. Chani, and D. Sierra-Sosa, “Euler-Rodrigues Parameters: A Quantum Circuit to Calculate Rigid-Body Rotations,” Mar. 2022, arXiv:2203.12943 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2203.12943
- D. Volya and P. Mishra, “State Preparation on Quantum Computers via Quantum Steering,” Mar. 2023, arXiv:2302.13518 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2302.13518
- M. A. Bowman, P. Gokhale, J. Larson, J. Liu, and M. Suchara, “Hardware-Conscious Optimization of the Quantum Toffoli Gate,” ACM Transactions on Quantum Computing, p. 3609229, Jul. 2023, arXiv:2209.02669 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2209.02669
- J. L. Kim, G. Kollias, A. Kalev, K. X. Wei, and A. Kyrillidis, “Fast quantum state reconstruction via accelerated non-convex programming,” Photonics, vol. 10, no. 2, 2023. [Online]. Available: https://www.mdpi.com/2304-6732/10/2/116
- M. Gutiérrez, C. Smith, L. Lulushi, S. Janardan, and K. R. Brown, “Errors and pseudo-thresholds for incoherent and coherent noise,” vol. 94, no. 4, p. 042338. [Online]. Available: http://arxiv.org/abs/1605.03604
- M.-D. Choi, “Completely positive linear maps on complex matrices,” vol. 10, no. 3, pp. 285–290. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/0024379575900750
- J. Siewert, “On orthogonal bases in the Hilbert-Schmidt space of matrices,” Journal of Physics Communications, vol. 6, no. 5, p. 055014, May 2022. [Online]. Available: https://dx.doi.org/10.1088/2399-6528/ac6f43
- J. Altepeter, E. Jeffrey, and P. Kwiat, “Photonic state tomography,” in Advances In Atomic, Molecular, and Optical Physics. Elsevier, vol. 52, pp. 105–159. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1049250X05520032
- A. Kalev, R. L. Kosut, and I. H. Deutsch, “Quantum tomography protocols with positivity are compressed sensing protocols,” vol. 1, no. 1, p. 15018. [Online]. Available: http://www.nature.com/articles/npjqi201518
- A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi, “Provable quantum state tomography via non-convex methods.” [Online]. Available: http://arxiv.org/abs/1711.02524
- A. Kyrillidis and V. Cevher, “Matrix recipes for hard thresholding methods,” 2013.
- G. Feng, J. J. Wallman, B. Buonacorsi, F. H. Cho, D. Park, T. Xin, D. Lu, J. Baugh, and R. Laflamme, “Estimating the coherence of noise in quantum control of a solid-state qubit,” Physical Review Letters, vol. 117, no. 26, p. 260501, Dec. 2016, arXiv:1603.03761 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1603.03761
- S. Bravyi, M. Englbrecht, R. Koenig, and N. Peard, “Correcting coherent errors with surface codes,” npj Quantum Information, vol. 4, no. 1, p. 55, Oct. 2018, arXiv:1710.02270 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1710.02270
- D. Greenbaum and Z. Dutton, “Modeling coherent errors in quantum error correction,” Quantum Science and Technology, vol. 3, no. 1, p. 015007, Jan. 2018, arXiv:1612.03908 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1612.03908
- D. Quiroga, P. Date, and R. C. Pooser, “Discriminating Quantum States with Quantum Machine Learning,” Nov. 2021, pp. 56–63, arXiv:2112.00313 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2112.00313
- V. R. Pascuzzi, A. He, C. W. Bauer, W. A. de Jong, and B. Nachman, “Computationally Efficient Zero Noise Extrapolation for Quantum Gate Error Mitigation,” Physical Review A, vol. 105, no. 4, p. 042406, Apr. 2022, arXiv:2110.13338 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2110.13338
- M. Mohseni, A. T. Rezakhani, and D. A. Lidar, “Quantum process tomography: Resource analysis of different strategies,” vol. 77, no. 3, p. 032322. [Online]. Available: http://arxiv.org/abs/quant-ph/0702131
- D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
- R. L. Kosut, “Quantum process tomography via l1-norm minimization.” [Online]. Available: http://arxiv.org/abs/0812.4323
- A. Shabani, R. L. Kosut, M. Mohseni, H. Rabitz, M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Efficient measurement of quantum dynamics via compressive sensing,” vol. 106, no. 10, p. 100401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.106.100401
- D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” vol. 105, no. 15, p. 150401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.105.150401
- Y.-K. Liu, “Universal low-rank matrix recovery from pauli measurements.” [Online]. Available: http://arxiv.org/abs/1103.2816
- S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, “Quantum tomography via compressed sensing: Error bounds, sample complexity, and efficient estimators,” vol. 14, no. 9, p. 095022. [Online]. Available: http://arxiv.org/abs/1205.2300
- E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” vol. 59, no. 8, pp. 1207–1223. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/cpa.20124
- M. Guta, J. Kahn, R. Kueng, and J. A. Tropp, “Fast state tomography with optimal error bounds.” [Online]. Available: http://arxiv.org/abs/1809.11162
- G. C. Knee, E. Bolduc, J. Leach, and E. M. Gauger, “Quantum process tomography via completely positive and trace-preserving projection,” vol. 98, no. 6, p. 062336. [Online]. Available: http://arxiv.org/abs/1803.10062
- R. L. Dykstra, “An algorithm for restricted least squares regression,” vol. 78, no. 384, pp. 837–842. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10477029
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.