Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Using non-convex optimization in quantum process tomography: Factored gradient descent is tough to beat (2312.01311v1)

Published 3 Dec 2023 in quant-ph and math.OC

Abstract: We propose a non-convex optimization algorithm, based on the Burer-Monteiro (BM) factorization, for the quantum process tomography problem, in order to estimate a low-rank process matrix $\chi$ for near-unitary quantum gates. In this work, we compare our approach against state of the art convex optimization approaches based on gradient descent. We use a reduced set of initial states and measurement operators that require $2 \cdot 8n$ circuit settings, as well as $\mathcal{O}(4n)$ measurements for an underdetermined setting. We find our algorithm converges faster and achieves higher fidelities than state of the art, both in terms of measurement settings, as well as in terms of noise tolerance, in the cases of depolarizing and Gaussian noise models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
  2. J. Altepeter, E. Jeffrey, and P. Kwiat, “Photonic state tomography,” Advances in Atomic, Molecular, and Optical Physics, vol. 52, pp. 105–159, 2005.
  3. S. Aaronson, “Shadow tomography of quantum states,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018, pp. 325–338.
  4. J. B. Altepeter, D. Branning, E. Jeffrey, T. Wei, P. G. Kwiat, R. T. Thew, J. L. O’Brien, M. A. Nielsen, and A. G. White, “Ancilla-assisted quantum process tomography,” Physical Review Letters, vol. 90, no. 19, p. 193601, 2003.
  5. J. Kunjummen, M. C. Tran, D. Carney, and J. M. Taylor, “Shadow process tomography of quantum channels,” Physical Review A, vol. 107, no. 4, p. 042403, 2023.
  6. A. Kardashin, A. Uvarov, D. Yudin, and J. Biamonte, “Certified variational quantum algorithms for eigenstate preparation,” Physical Review A, vol. 102, no. 5, p. 052610, 2020.
  7. J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and E. Kashefi, “Quantum certification and benchmarking,” Nature Reviews Physics, vol. 2, no. 7, pp. 382–390, 2020.
  8. E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized Benchmarking of Quantum Gates,” Physical Review A, vol. 77, no. 1, p. 012307, Jan. 2008, arXiv:0707.0963 [quant-ph]. [Online]. Available: http://arxiv.org/abs/0707.0963
  9. C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and Approximate Unitary 2-Designs: Constructions and Applications,” Physical Review A, vol. 80, no. 1, p. 012304, Jul. 2009, arXiv:quant-ph/0606161. [Online]. Available: http://arxiv.org/abs/quant-ph/0606161
  10. A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker, E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and R. Blatt, “Characterizing large-scale quantum computers via cycle benchmarking,” Nature Communications, vol. 10, no. 1, p. 5347, Nov. 2019, arXiv:1902.08543 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1902.08543
  11. A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi, “Provable quantum state tomography via non-convex methods,” npj Quantum Information, vol. 4, no. 36, 2018.
  12. D. Gross, Y.-K. Liu, S. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Physical review letters, vol. 105, no. 15, p. 150401, 2010.
  13. K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Physical Review A, vol. 61, no. 1, p. 010304, 1999.
  14. M. Paris, G. D’Ariano, and M. Sacchi, “Maximum-likelihood method in quantum estimation,” in AIP Conference Proceedings, vol. 568, no. 1.   AIP, 2001, pp. 456–467.
  15. J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomography,” Phys. Rev. A, vol. 75, p. 042108, 2007. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.75.042108
  16. D. Gonçalves, M. Gomes-Ruggiero, C. Lavor, O. J. Farias, and P. Ribeiro, “Local solutions of maximum likelihood estimation in quantum state tomography,” Quantum Information & Computation, vol. 12, no. 9-10, pp. 775–790, 2012.
  17. Y. S. Teo, J. Řeháček, and Z. Hradil, “Informationally incomplete quantum tomography,” Quantum Measurements and Quantum Metrology, vol. 1, 2013. [Online]. Available: https://www.degruyter.com/view/j/qmetro.2013.1.issue/qmetro-2013-0006/qmetro-2013-0006.xml
  18. J. A. Smolin, J. M. Gambetta, and G. Smith, “Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise,” Physical review letters, vol. 108, no. 7, p. 070502, 2012.
  19. G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, “Neural-network quantum state tomography,” Nat. Phys., vol. 14, pp. 447–450, May 2018. [Online]. Available: https://doi.org/10.1038/s41567-018-0048-5
  20. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, “Efficient quantum state tomography,” Nat. Comm., vol. 1, p. 149, 2010. [Online]. Available: https://doi.org/10.1038/ncomms1147
  21. B. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand, A. Buyskikh, A. Daley, M. Cramer et al., “Efficient tomography of a quantum many-body system,” Nature Physics, vol. 13, no. 12, pp. 1158–1162, 2017.
  22. S. T. Flammia and Y.-K. Liu, “Direct fidelity estimation from few pauli measurements,” Physical review letters, vol. 106, no. 23, p. 230501, 2011.
  23. M. P. da Silva, O. Landon-Cardinal, and D. Poulin, “Practical characterization of quantum devices without tomography,” Physical Review Letters, vol. 107, no. 21, p. 210404, 2011.
  24. A. Kalev, A. Kyrillidis, and N. M. Linke, “Validating and certifying stabilizer states,” Physical Review A, vol. 99, no. 4, p. 042337, 2019.
  25. E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout, “Gate Set Tomography,” Quantum, vol. 5, p. 557, Oct. 2021, arXiv:2009.07301 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2009.07301
  26. R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and P. Maunz, “Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography,” Nature Communications, vol. 8, no. 1, p. 14485, Feb. 2017, arXiv:1605.07674 [physics, physics:quant-ph]. [Online]. Available: http://arxiv.org/abs/1605.07674
  27. M. Mohseni, A. Rezakhani, and D. Lidar, “Quantum-process tomography: Resource analysis of different strategies,” Physical Review A, vol. 77, no. 3, p. 032322, 2008.
  28. M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Physical Review A, vol. 68, no. 1, p. 012305, 2003.
  29. M. Kliesch, R. Kueng, J. Eisert, and D. Gross, “Guaranteed recovery of quantum processes from few measurements,” Quantum, vol. 3, p. 171, 2019.
  30. I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” vol. 44, no. 11, pp. 2455–2467. [Online]. Available: http://arxiv.org/abs/quant-ph/9610001
  31. J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” vol. 78, no. 2, pp. 390–393. [Online]. Available: http://arxiv.org/abs/quant-ph/9611013
  32. T. Surawy-Stepney, J. Kahn, R. Kueng, and M. Guta, “Projected least-squares quantum process tomography.” [Online]. Available: http://arxiv.org/abs/2107.01060
  33. S. Ahmed, F. Quijandría, and A. F. Kockum, “Gradient-descent quantum process tomography by learning kraus operators.” [Online]. Available: http://arxiv.org/abs/2208.00812
  34. C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” vol. 90, no. 1, p. 012110. [Online]. Available: http://arxiv.org/abs/1404.2877
  35. A. Kalev, R. Kosut, and I. Deutsch, “Quantum tomography protocols with positivity are compressed sensing protocols,” NPJ Quantum Information, vol. 1, p. 15018, 2015.
  36. E. Pelaez, A. Das, P. S. Chani, and D. Sierra-Sosa, “Euler-Rodrigues Parameters: A Quantum Circuit to Calculate Rigid-Body Rotations,” Mar. 2022, arXiv:2203.12943 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2203.12943
  37. D. Volya and P. Mishra, “State Preparation on Quantum Computers via Quantum Steering,” Mar. 2023, arXiv:2302.13518 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2302.13518
  38. M. A. Bowman, P. Gokhale, J. Larson, J. Liu, and M. Suchara, “Hardware-Conscious Optimization of the Quantum Toffoli Gate,” ACM Transactions on Quantum Computing, p. 3609229, Jul. 2023, arXiv:2209.02669 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2209.02669
  39. J. L. Kim, G. Kollias, A. Kalev, K. X. Wei, and A. Kyrillidis, “Fast quantum state reconstruction via accelerated non-convex programming,” Photonics, vol. 10, no. 2, 2023. [Online]. Available: https://www.mdpi.com/2304-6732/10/2/116
  40. M. Gutiérrez, C. Smith, L. Lulushi, S. Janardan, and K. R. Brown, “Errors and pseudo-thresholds for incoherent and coherent noise,” vol. 94, no. 4, p. 042338. [Online]. Available: http://arxiv.org/abs/1605.03604
  41. M.-D. Choi, “Completely positive linear maps on complex matrices,” vol. 10, no. 3, pp. 285–290. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/0024379575900750
  42. J. Siewert, “On orthogonal bases in the Hilbert-Schmidt space of matrices,” Journal of Physics Communications, vol. 6, no. 5, p. 055014, May 2022. [Online]. Available: https://dx.doi.org/10.1088/2399-6528/ac6f43
  43. J. Altepeter, E. Jeffrey, and P. Kwiat, “Photonic state tomography,” in Advances In Atomic, Molecular, and Optical Physics.   Elsevier, vol. 52, pp. 105–159. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1049250X05520032
  44. A. Kalev, R. L. Kosut, and I. H. Deutsch, “Quantum tomography protocols with positivity are compressed sensing protocols,” vol. 1, no. 1, p. 15018. [Online]. Available: http://www.nature.com/articles/npjqi201518
  45. A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi, “Provable quantum state tomography via non-convex methods.” [Online]. Available: http://arxiv.org/abs/1711.02524
  46. A. Kyrillidis and V. Cevher, “Matrix recipes for hard thresholding methods,” 2013.
  47. G. Feng, J. J. Wallman, B. Buonacorsi, F. H. Cho, D. Park, T. Xin, D. Lu, J. Baugh, and R. Laflamme, “Estimating the coherence of noise in quantum control of a solid-state qubit,” Physical Review Letters, vol. 117, no. 26, p. 260501, Dec. 2016, arXiv:1603.03761 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1603.03761
  48. S. Bravyi, M. Englbrecht, R. Koenig, and N. Peard, “Correcting coherent errors with surface codes,” npj Quantum Information, vol. 4, no. 1, p. 55, Oct. 2018, arXiv:1710.02270 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1710.02270
  49. D. Greenbaum and Z. Dutton, “Modeling coherent errors in quantum error correction,” Quantum Science and Technology, vol. 3, no. 1, p. 015007, Jan. 2018, arXiv:1612.03908 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1612.03908
  50. D. Quiroga, P. Date, and R. C. Pooser, “Discriminating Quantum States with Quantum Machine Learning,” Nov. 2021, pp. 56–63, arXiv:2112.00313 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2112.00313
  51. V. R. Pascuzzi, A. He, C. W. Bauer, W. A. de Jong, and B. Nachman, “Computationally Efficient Zero Noise Extrapolation for Quantum Gate Error Mitigation,” Physical Review A, vol. 105, no. 4, p. 042406, Apr. 2022, arXiv:2110.13338 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2110.13338
  52. M. Mohseni, A. T. Rezakhani, and D. A. Lidar, “Quantum process tomography: Resource analysis of different strategies,” vol. 77, no. 3, p. 032322. [Online]. Available: http://arxiv.org/abs/quant-ph/0702131
  53. D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
  54. R. L. Kosut, “Quantum process tomography via l1-norm minimization.” [Online]. Available: http://arxiv.org/abs/0812.4323
  55. A. Shabani, R. L. Kosut, M. Mohseni, H. Rabitz, M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Efficient measurement of quantum dynamics via compressive sensing,” vol. 106, no. 10, p. 100401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.106.100401
  56. D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” vol. 105, no. 15, p. 150401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.105.150401
  57. Y.-K. Liu, “Universal low-rank matrix recovery from pauli measurements.” [Online]. Available: http://arxiv.org/abs/1103.2816
  58. S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, “Quantum tomography via compressed sensing: Error bounds, sample complexity, and efficient estimators,” vol. 14, no. 9, p. 095022. [Online]. Available: http://arxiv.org/abs/1205.2300
  59. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” vol. 59, no. 8, pp. 1207–1223. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/cpa.20124
  60. M. Guta, J. Kahn, R. Kueng, and J. A. Tropp, “Fast state tomography with optimal error bounds.” [Online]. Available: http://arxiv.org/abs/1809.11162
  61. G. C. Knee, E. Bolduc, J. Leach, and E. M. Gauger, “Quantum process tomography via completely positive and trace-preserving projection,” vol. 98, no. 6, p. 062336. [Online]. Available: http://arxiv.org/abs/1803.10062
  62. R. L. Dykstra, “An algorithm for restricted least squares regression,” vol. 78, no. 384, pp. 837–842. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10477029
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.