Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Observational Constraints on Extended Starobinsky and Weyl Gravity Model of Inflation (2312.01010v3)

Published 2 Dec 2023 in astro-ph.CO and hep-ph

Abstract: We present constraints on the extended Starobinsky and Weyl gravity model of inflation using updated available observational data. The data includes cosmic microwave background (CMB) anisotropy measurements from Planck and BICEP/Keck 2018 (BK18), as well as large-scale structure data encompassing cosmic shear and galaxy autocorrelation and cross-correlation functions measurements from Dark Energy Survey (DES), baryonic acoustic oscillation (BAO) measurements from 6dF, MGS and BOSS, and distance measurements from supernovae type Ia from Pantheon+ samples. By introducing a single additional parameter, each model extends the Starobinsky model to encompass larger region of parameter space while remaining consistent with all observational data. Our findings demonstrate that the inclusion of higher-order terms loosen the constraint on the upper bound of $e$-folding number $N_{\rm e}$ due to the presence of small additional parameter. The maximum limit on $N_{\rm e}$ could be refined by considering the reheating process to $N_{\rm e}<55-59$ for $k_{*}=0.002, 0.05$ Mpc${-1}$. These models extend viable range of tensor-to-scalar ratio~($r$) to very small value $r<0.002$ in contrast to the original $R2$ Starobinsky model. In addition, our results continue to emphasize the tension in $H_0$ and $S_8$ between early-time CMB measurements and late-time large-scale structure observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. A. A. Starobinsky, Physics Letters B 91, 99 (1980).
  2. I. Antoniadis and S. P. Patil, European Physical Journal C 75, 182 (2015), arXiv:1410.8845 [hep-th] .
  3. S. D. Odintsov and V. K. Oikonomou, Annals of Physics 388, 267 (2018), arXiv:1710.01226 [gr-qc] .
  4. S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 99, 064049 (2019a), arXiv:1901.05363 [gr-qc] .
  5. S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 99, 104070 (2019b), arXiv:1905.03496 [gr-qc] .
  6. C. P. Burgess, Living Reviews in Relativity 7, 5 (2004), arXiv:gr-qc/0311082 [gr-qc] .
  7. I. D. Gialamas and A. B. Lahanas, Phys. Rev. D 101, 084007 (2020), arXiv:1911.11513 [gr-qc] .
  8. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, 2000).
  9. D. M. Ghilencea, Journal of High Energy Physics 2019, 49 (2019a), arXiv:1812.08613 [hep-th] .
  10. D. M. Ghilencea and H. M. Lee, Phys. Rev. D 99, 115007 (2019), arXiv:1809.09174 [hep-th] .
  11. D. M. Ghilencea, Journal of High Energy Physics 2019, 209 (2019b), arXiv:1906.11572 [gr-qc] .
  12. D. M. Ghilencea, Phys. Rev. D 101, 045010 (2020a), arXiv:1904.06596 [hep-th] .
  13. D. M. Ghilencea, European Physical Journal C 80, 1147 (2020b), arXiv:2003.08516 [hep-th] .
  14. D. M. Ghilencea, European Physical Journal C 81, 510 (2021).
  15. D. M. Ghilencea and T. Harko, arXiv e-prints , arXiv:2110.07056 (2021), arXiv:2110.07056 [gr-qc] .
  16. D. M. Ghilencea, European Physical Journal C 82, 23 (2022), arXiv:2104.15118 [hep-ph] .
  17. D. M. Ghilencea, European Physical Journal C 83, 176 (2023), arXiv:2203.05381 [hep-th] .
  18. Y. Tang and Y.-L. Wu, Physics Letters B 809, 135716 (2020), arXiv:2006.02811 [hep-ph] .
  19. J. S. Speagle, arXiv e-prints , arXiv:1909.12313 (2019), arXiv:1909.12313 [stat.OT] .
  20. A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002), arXiv:astro-ph/0205436 [astro-ph] .
  21. A. Lewis, arXiv e-prints , arXiv:1910.13970 (2019), arXiv:1910.13970 [astro-ph.IM] .
  22. T. Okamoto and W. Hu, Phys. Rev. D 67, 083002 (2003), arXiv:astro-ph/0301031 [astro-ph] .
  23. S. Groot Nibbelink and B. J. W. van Tent, Classical and Quantum Gravity 19, 613 (2002), arXiv:hep-ph/0107272 [hep-ph] .
  24. A. R. Liddle and S. M. Leach, Phys. Rev. D 68, 103503 (2003), arXiv:astro-ph/0305263 [astro-ph] .
  25. R. C. Nunes and S. Vagnozzi, MNRAS 505, 5427 (2021), arXiv:2106.01208 [astro-ph.CO] .
  26. J. Martin and C. Ringeval, Phys. Rev. D 82, 023511 (2010), arXiv:1004.5525 [astro-ph.CO] .
  27. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A20 (2016), arXiv:1502.02114 [astro-ph.CO] .
  28. D. H. D. H. Lyth and A. A. Riotto, Phys. Rep. 314, 1 (1999), arXiv:hep-ph/9807278 [hep-ph] .
  29. J. Crowder and N. J. Cornish, Phys. Rev. D 72, 083005 (2005), arXiv:gr-qc/0506015 [gr-qc] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com