Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infrared Image Super-Resolution via GAN (2312.00689v1)

Published 1 Dec 2023 in eess.IV and cs.CV

Abstract: The ability of generative models to accurately fit data distributions has resulted in their widespread adoption and success in fields such as computer vision and natural language processing. In this chapter, we provide a brief overview of the application of generative models in the domain of infrared (IR) image super-resolution, including a discussion of the various challenges and adversarial training methods employed. We propose potential areas for further investigation and advancement in the application of generative models for IR image super-resolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. Agricultural Water Management 256, 107071 (2021)
  2. In: Asian Conference on Computer Vision, pp. 418–433. Springer (2018)
  3. Transactions of the ASABE 64(6), 2089–2101 (2021)
  4. IEEE Access 9, 5951–5971 (2020)
  5. The Astrophysical Journal 620, 450 – 458 (2005)
  6. Biomedical optics express 13(3), 1173–1187 (2022)
  7. Journal of the American Chemical Society 143(44), 18388–18393 (2021)
  8. Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (2021)
  9. Computers and Electronics in Agriculture 171, 105331 (2020)
  10. Information Fusion 79, 124–145 (2022)
  11. In: SENSORS, 2014 IEEE, pp. 1038–1041. IEEE (2014)
  12. Communications of the ACM 63(11), 139–144 (2020)
  13. Applied optics 57(18), D98–D107 (2018)
  14. Advances in neural information processing systems 30 (2017)
  15. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13419–13429 (2022)
  16. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141 (2018)
  17. IEEE Signal Processing Letters 28, 982–986 (2021)
  18. In: Pacific Rim International Conference on Artificial Intelligence, pp. 461–472. Springer (2021)
  19. arXiv preprint arXiv:2311.08816 (2023)
  20. DOI 10.48550/ARXIV.2212.12322
  21. arXiv preprint arXiv:2208.03008 (2022)
  22. Automation in Construction 137, 104229 (2022)
  23. IEEE Signal Processing Letters 28, 1070–1074 (2021)
  24. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5148–5157 (2021)
  25. Journal of Sensor Science and Technology 27(6), 357–361 (2018)
  26. Plasmonics 8(2), 835–842 (2013)
  27. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 624–632 (2017)
  28. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681–4690 (2017)
  29. In: Display Technologies and Applications for Defense, Security, and Avionics, vol. 6558, pp. 95–101. SPIE (2007)
  30. In: International Conference on Learning Representations (2021)
  31. arXiv preprint arXiv:2201.10747 (2022)
  32. arXiv preprint arXiv:2210.00752 (2022)
  33. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3867–3876 (2019)
  34. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)
  35. Applied Intelligence 51(4), 2018–2030 (2021)
  36. Remote Sensing 13(18), 3663 (2021)
  37. Sensors 19(23), 5139 (2019)
  38. IEEE Transactions on Geoscience and Remote Sensing 60, 1–14 (2021)
  39. Biosensors & Bioelectronics 178, 113004 – 113004 (2021)
  40. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7769–7778 (2020)
  41. Food Analytical Methods 15(1), 75–84 (2022)
  42. Astronomy and Astrophysics 305, 296–307 (1996)
  43. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II, vol. 11413, pp. 184–194. SPIE (2020)
  44. IEEE signal processing magazine 20(3), 21–36 (2003)
  45. Remote Sensing 13(18), 3568 (2021)
  46. Sensors 20(23), 6732 (2020)
  47. CRC press (2018)
  48. Sensors 22(6), 2254 (2022)
  49. In: Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, vol. 5076, pp. 92–100. SPIE (2003)
  50. Journal of Infrared and Millimeter Wave 37(4), 427–432 (2018)
  51. IEEE transactions on pattern analysis and machine intelligence (2021)
  52. Chemistry (2022)
  53. Journal of Food Process Engineering 44(4), e13654 (2021)
  54. Wang, S.P.: Stripe noise removal for infrared image by minimizing difference between columns. Infrared Physics & Technology 77, 58–64 (2016)
  55. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1905–1914 (2021)
  56. In: Proceedings of the European conference on computer vision (ECCV) workshops, pp. 0–0 (2018)
  57. IEEE transactions on pattern analysis and machine intelligence 43(10), 3365–3387 (2020)
  58. arXiv preprint arXiv:2205.14141 (2022)
  59. arXiv preprint arXiv:2207.00943 (2022)
  60. arXiv preprint arXiv:2203.11926 (2022)
  61. Water 12(9), 2605 (2020)
  62. arXiv preprint arXiv:2205.01917 (2022)
  63. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4791–4800 (2021)
  64. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 527–536 (2022)
  65. In: Proceedings of the European conference on computer vision (ECCV), pp. 286–301 (2018)
  66. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 2606–2616 (2022)

Summary

We haven't generated a summary for this paper yet.