Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Edge modes, extended TQFT, and measurement based quantum computation (2312.00605v3)

Published 1 Dec 2023 in hep-th, cond-mat.other, math-ph, math.MP, and quant-ph

Abstract: Quantum teleportation can be used to define a notion of parallel transport which characterizes the entanglement structure of a quantum state \cite{Czech:2018kvg}. This suggests one can formulate a gauge theory of entanglement. In \cite{Wong:2022mnv}, it was explained that measurement based quantum computation in one dimension can be understood in term of such a gauge theory (MBQC). In this work, we give an alternative formulation of this "entanglement gauge theory" as an extended topological field theory. This formulation gives a alternative perspective on the relation between the circuit model and MBQC. In addition, it provides an interpretation of MBQC in terms of the extended Hilbert space construction in gauge theories, in which the entanglement edge modes play the role of the logical qubit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. B. Czech, L. Lamprou, and L. Susskind, “Entanglement Holonomies,” arXiv:1807.04276 [hep-th].
  2. G. Wong, R. Raussendorf, and B. Czech, “The Gauge Theory of Measurement-Based Quantum Computation,” arXiv:2207.10098 [hep-th].
  3. H. Casini, M. Huerta, R. C. Myers, and A. Yale, “Mutual information and the F-theorem,” JHEP 10 (2015) 003, arXiv:1506.06195 [hep-th].
  4. W. Donnelly, “Entanglement entropy and nonabelian gauge symmetry,” Class. Quant. Grav. 31 no. 21, (2014) 214003, arXiv:1406.7304 [hep-th].
  5. W. Donnelly, “Decomposition of entanglement entropy in lattice gauge theory,” Phys.Rev. D85 (2012) 085004, arXiv:1109.0036 [hep-th].
  6. W. Donnelly and A. C. Wall, “Entanglement entropy of electromagnetic edge modes,” Phys. Rev. Lett. 114 no. 11, (2015) 111603, arXiv:1412.1895 [hep-th].
  7. W. Donnelly and A. C. Wall, “Geometric entropy and edge modes of the electromagnetic field,” arXiv:1506.05792 [hep-th].
  8. G. Wong, “A note on the bulk interpretation of the Quantum Extremal Surface formula,” arXiv:2212.03193 [hep-th].
  9. T. G. Mertens, J. Simón, and G. Wong, “A proposal for 3d quantum gravity and its bulk factorization,” JHEP 06 (2023) 134, arXiv:2210.14196 [hep-th].
  10. M. S. Klinger and R. G. Leigh, “Crossed products, extended phase spaces and the resolution of entanglement singularities,” 2023.
  11. K. Van Acoleyen, N. Bultinck, J. Haegeman, M. Marien, V. B. Scholz, and F. Verstraete, “The entanglement of distillation for gauge theories,” Phys. Rev. Lett. 117 no. 13, (2016) 131602, arXiv:1511.04369 [quant-ph].
  12. R. Raussendorf and H. Briegel, “Computational model underlying the one-way quantum computer,” Quant. Inf. Comput. 2 no. 6, (2002) 443–486.
  13. D. T. Stephen, D.-S. Wang, A. Prakash, T.-C. Wei, and R. Raussendorf, “Computational Power of Symmetry-Protected Topological Phases,” Phys. Rev. Lett. 119 no. 1, (2017) 010504, arXiv:1611.08053 [quant-ph].
  14. G. W. Moore and G. Segal, “D-branes and K-theory in 2D topological field theory,” arXiv:hep-th/0609042.
  15. K. Shiozaki and S. Ryu, “Matrix product states and equivariant topological field theories for bosonic symmetry-protected topological phases in (1+1) dimensions,” JHEP 04 (2017) 100, arXiv:1607.06504 [cond-mat.str-el].
  16. W. Donnelly and G. Wong, “Entanglement branes, modular flow, and extended topological quantum field theory,” JHEP 10 (2019) 016, arXiv:1811.10785 [hep-th].
  17. A. Kapustin, “Topological Field Theory, Higher Categories, and Their Applications,” in International Congress of Mathematicians. 4, 2010. arXiv:1004.2307 [math.QA].
  18. D. V. Else, I. Schwarz, S. D. Bartlett, and A. C. Doherty, “Symmetry-protected phases for measurement-based quantum computation,” Physical Review Letters 108 no. 24, (June, 2012) . http://dx.doi.org/10.1103/PhysRevLett.108.240505.
  19. C. Cheng, “A character theory for projective representations of finite groups,” Linear Algebra and its applications 469 (2015) 230–242.
  20. D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia, “Measurement-based quantum computation beyond the one-way model,” Phys. Rev. A 76 (Nov, 2007) 052315. https://link.aps.org/doi/10.1103/PhysRevA.76.052315.
  21. C. Rovelli, “Why gauge?,” Foundations of Physics 44 no. 1, (Jan., 2014) 91–104. http://dx.doi.org/10.1007/s10701-013-9768-7.
  22. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: Formalism and phenomena,” Physical Review A 71 no. 6, (June, 2005) . http://dx.doi.org/10.1103/PhysRevA.71.062307.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.