Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Indoor Millimeter Wave Localization using Multiple Self-Supervised Tiny Neural Networks (2311.18732v1)

Published 30 Nov 2023 in eess.SP, cs.LG, and cs.NI

Abstract: We consider the localization of a mobile millimeter-wave client in a large indoor environment using multilayer perceptron neural networks (NNs). Instead of training and deploying a single deep model, we proceed by choosing among multiple tiny NNs trained in a self-supervised manner. The main challenge then becomes to determine and switch to the best NN among the available ones, as an incorrect NN will fail to localize the client. In order to upkeep the localization accuracy, we propose two switching schemes: one based on a Kalman filter, and one based on the statistical distribution of the training data. We analyze the proposed schemes via simulations, showing that our approach outperforms both geometric localization schemes and the use of a single NN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. A. Shastri, N. Valecha et al., “A review of millimeter wave device-based localization and device-free sensing technologies and applications,” IEEE Commun. Surveys Tuts., vol. 24, no. 3, pp. 1708–1749, 2022.
  2. I. A. Hemadeh, K. Satyanarayana et al., “Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 870–913, 2018.
  3. C. Fiandrino, H. Assasa et al., “Scaling millimeter-wave networks to dense deployments and dynamic environments,” Proc. IEEE, vol. 107, no. 4, pp. 732–745, 2019.
  4. T. Koike-Akino, P. Wang et al., “Fingerprinting-based indoor localization with commercial mmWave WiFi: A deep learning approach,” IEEE Access, vol. 8, pp. 84 879–84 892, 2020.
  5. A. Shastri, J. Palacios, and P. Casari, “Millimeter wave localization with imperfect training data using shallow neural networks,” in Proc. IEEE WCNC, 2022, pp. 674–679.
  6. J. Palacios, P. Casari, and J. Widmer, “JADE: Zero-knowledge device localization and environment mapping for millimeter wave systems,” in Proc. IEEE INFOCOM, 2017, pp. 1–9.
  7. F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and technologies,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2568–2599, 2019.
  8. J. Palacios, G. Bielsa et al., “Single-and multiple-access point indoor localization for millimeter-wave networks,” IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1927–1942, 2019.
  9. A. Blanco, P. J. Mateo et al., “Augmenting mmWave localization accuracy through sub-6 GHz on off-the-shelf devices,” in Proc. ACM Mobisys, 2022, p. 477–490.
  10. D. Garcia, J. O. Lacruz et al., “POLAR: Passive object localization with IEEE 802.11ad using phased antenna arrays,” in Proc. IEEE INFOCOM, 2020, pp. 1838–1847.
  11. P. Wang, M. Pajovic et al., “Fingerprinting-based indoor localization with commercial mmWave WiFi - Part II: Spatial beam SNRs,” in Proc. IEEE GLOBECOM, 2019, pp. 1–6.
  12. C. J. Vaca-Rubio, P. Wang et al., “mmWave Wi-Fi trajectory estimation with continuous-time neural dynamic learning,” in Proc. IEEE ICASSP, 2023, pp. 1–5.
  13. A. Vashist, M. P. Li et al., “KF-Loc: A Kalman filter and machine learning integrated localization system using consumer-grade millimeter-wave hardware,” IEEE Consum. Electron. Mag., vol. 11, pp. 65–77, 2022.
  14. Y. Xie, J. Xiong et al., “MD-Track: Leveraging multi-dimensionality for passive indoor Wi-Fi tracking,” in Proc. ACM MobiCom, Aug. 2019.
  15. R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.
  16. I. Reid and H. Term, “Estimation II,” University of Oxford, Lecture Notes, 2001.
Citations (1)

Summary

We haven't generated a summary for this paper yet.