Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithm-Supervised Millimeter Wave Indoor Localization using Tiny Neural Networks (2401.01329v2)

Published 2 Jan 2024 in eess.SP and cs.NI

Abstract: The quasi-optical propagation of millimeter-wave signals enables high-accuracy localization algorithms that employ geometric approaches or machine learning models. However, most algorithms require information on the indoor environment, may entail the collection of large training datasets, or bear an infeasible computational burden for commercial off-the-shelf (COTS) devices. In this work, we propose to use tiny neural networks (NNs) to learn the relationship between angle difference-of-arrival (ADoA) measurements and locations of a receiver in an indoor environment. To relieve training data collection efforts, we resort to a self-supervised approach by bootstrapping the training of our neural network through location estimates obtained from a state-of-the-art localization algorithm. We evaluate our scheme via mmWave measurements from indoor 60-GHz double-directional channel sounding. We process the measurements to yield dominant multipath components, use the corresponding angles to compute ADoA values, and finally obtain location fixes. Results show that the tiny NN achieves sub-meter errors in 74% of the cases, thus performing as good as or even better than the state-of-the-art algorithm, with significantly lower computational complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. F. Lemic, J. Martin, C. Yarp, D. Chan, V. Handziski, R. Brodersen, G. Fettweis, A. Wolisz, and J. Wawrzynek, “Localization as a feature of mmWave communication,” in Proc. IWCMC, 2016.
  2. H. Wymeersch and G. Seco-Granados, “Radio localization and sensing—Part I: Fundamentals,” IEEE Commun. Lett., 2022.
  3. U. T. Virk and K. Haneda, “Modeling human blockage at 5G millimeter-wave frequencies,” IEEE Trans. Antennas Propag., no. 3, 2020.
  4. I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, “Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget,” IEEE Commun. Surveys Tuts., no. 2, 2018.
  5. A. Shastri, N. Valecha, E. Bashirov, H. Tataria, M. Lentmaier, F. Tufvesson, M. Rossi, and P. Casari, “A review of millimeter wave device-based localization and device-free sensing technologies and applications,” IEEE Commun. Surveys Tuts., no. 3, 2022.
  6. S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim, “Towards scalable and ubiquitous millimeter-wave wireless networks,” in Proc. ACM MobiCom, 2018.
  7. J. Palacios, P. Casari, H. Assasa, and J. Widmer, “LEAP: Location estimation and predictive handover with consumer-grade mmWave devices,” in Proc. IEEE INFOCOM, 2019.
  8. C. Fiandrino, H. Assasa, P. Casari, and J. Widmer, “Scaling millimeter-wave networks to dense deployments and dynamic environments,” Proceedings of the IEEE, no. 4, 2019.
  9. J. Yang, J. Xu, X. Li, S. Jin, and B. Gao, “Integrated communication and localization in millimeter-wave systems,” Frontiers of Information Tech. & Electronic Eng., no. 4, 2021.
  10. Z. Xiao and Y. Zeng, “An overview on integrated localization and communication towards 6G,” Dec. 2021.
  11. J. Palacios, P. Casari, and J. Widmer, “JADE: Zero-knowledge device localization and environment mapping for millimeter wave systems,” in Proc. IEEE INFOCOM, 2017.
  12. I. Pefkianakis and K.-H. Kim, “Accurate 3D localization for 60 GHz networks,” in Proc. ACM SenSys, 2018.
  13. A. Shastri, J. Palacios, and P. Casari, “Millimeter wave localization with imperfect training data using shallow neural networks,” in Proc. IEEE WCNC, 2022.
  14. S. Blandino, J. Senic, C. Gentile, D. Caudill, J. Chuang, and A. Kayani, “Markov multi-beamtracking on 60 GHz mobile channel measurements,” IEEE Open J. of Veh. Technol., 2022.
  15. F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and technologies,” IEEE Commun. Surveys Tuts., no. 3, 2019.
  16. M. Vari and D. Cassioli, “mmWaves RSSI indoor network localization,” in Proc. IEEE ICC, 2014.
  17. A. Olivier, G. Bielsa, I. Tejado, M. Zorzi, J. Widmer, and P. Casari, “Lightweight indoor localization for 60-GHz millimeter wave systems,” in Proc. IEEE SECON, 2016.
  18. J. Palacios, G. Bielsa, P. Casari, and J. Widmer, “Single-and multiple-access point indoor localization for millimeter-wave networks,” IEEE Trans. Wireless Commun., no. 3, 2019.
  19. A. Blanco, P. J. Mateo, F. Gringoli, and J. Widmer, “Augmenting mmWave localization accuracy through sub-6 GHz on off-the-shelf devices,” in Proc. ACM Mobisys, 2022.
  20. O. Kanhere, S. Ju, Y. Xing, and T. S. Rappaport, “Map-assisted millimeter wave localization for accurate position location,” in Proc. IEEE GLOBECOM, 2019.
  21. A. Yassin, Y. Nasser, M. Awad, and A. Al-Dubai, “Simultaneous context inference and mapping using mm-Wave for indoor scenarios,” in Proc. IEEE ICC, 2017.
  22. A. Yassin, Y. Nasser, and M. Awad, “Geometric approach in simultaneous context inference, localization and mapping using mm-Wave,” in Proc. ICT, 2018.
  23. A. Yassin, Y. Nasser, A. Y. Al-Dubai, and M. Awad, “MOSAIC: Simultaneous localization and environment mapping using mmWave without a-priori knowledge,” IEEE Access, 2018.
  24. J. Palacios, G. Bielsa, P. Casari, and J. Widmer, “Communication-driven localization and mapping for millimeter wave networks,” in Proc. IEEE INFOCOM, 2018.
  25. G. Bielsa, J. Palacios, A. Loch, D. Steinmetzer, P. Casari, and J. Widmer, “Indoor localization using commercial off-the-shelf 60 GHz access points,” in Proc. IEEE INFOCOM, 2018.
  26. T. T. Tsai, L. H. Shen, C. J. Chiu, and K. T. Feng, “Beam AoD-based Indoor Positioning for 60 GHz mmWave System,” in Proc. IEEE VTC-Fall, 2020.
  27. A. Vashist, D. R. Bhanushali, R. Relyea, C. Hochgraf, A. Ganguly, P. D. Sai Manoj, R. Ptucha, A. Kwasinski, and M. E. Kuhl, “Indoor wireless localization using consumer-grade 60 GHz equipment with machine learning for intelligent material handling,” in Proc. IEEE ICCE, 2020.
  28. M. Pajovic, P. Wang, T. Koike-Akino, H. Sun, and P. V. Orlik, “Fingerprinting-based indoor localization with commercial mmWave WiFi - Part I: RSS and beam indices,” in Proc. IEEE GLOBECOM, 2019.
  29. P. Wang, M. Pajovic, T. Koike-Akino, H. Sun, and P. V. Orlik, “Fingerprinting-based indoor localization with commercial mmWave WiFi - Part II: Spatial beam SNRs,” in Proc. IEEE GLOBECOM, 2019.
  30. T. Koike-Akino, P. Wang, M. Pajovic, H. Sun, and P. V. Orlik, “Fingerprinting-based indoor localization with commercial mmWave WiFi: A deep learning approach,” IEEE Access, 2020.
  31. P. Wang, T. Koike-Akino, and P. V. Orlik, “Fingerprinting-based indoor localization with commercial mmWave WiFi: NLOS propagation,” in Proc. IEEE GLOBECOM, 2020.
  32. P. Hong, C. Li, H. Chang, Y. Hsueh, and K. Wang, “WBF-PS: WiGig beam fingerprinting for UAV positioning system in GPS-denied environments,” in Proc. IEEE INFOCOM, 2020.
  33. Z. Wei, Y. Zhao, X. Liu, and Z. Feng, “DoA-LF: A location fingerprint positioning algorithm with millimeter-wave,” IEEE Access, 2017.
  34. C. Lai, R. Sun, C. Gentile, P. B. Papazian, J. Wang, and J. Senic, “Methodology for multipath-component tracking in millimeter-wave channel modeling,” IEEE Trans. Antennas Propag., no. 3, 2019.
  35. C. Gentile, P. B. Papazian, R. Sun, J. Senic, and J. Wang, “Quasi-deterministic channel model parameters for a data center at 60 GHz,” IEEE Antennas Wireless Propag. Lett., no. 5, 2018.
  36. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proc. AAAI KDD, no. 34, 1996.
  37. J. Wang, C. Gentile, J. Senic, R. Sun, P. B. Papazian, and C. Lai, “Unsupervised clustering for millimeter-wave channel propagation modeling,” in Proc. IEEE VTC-Fall, 2017.
  38. R. Sun, P. B. Papazian, J. Senic, Y. Lo, J.-K. Choi, K. A. Remley, and C. Gentile, “Design and calibration of a double-directional 60 GHz channel sounder for multipath component tracking,” in Proc. EUCAP, 2017.
  39. K. Hausmair, K. Witrisal, P. Meissner, C. Steiner, and G. Kail, “SAGE algorithm for UWB channel parameter estimation,” in COST 2100 Committee Meeting, 2010.

Summary

We haven't generated a summary for this paper yet.