Quantum fidelity kernel with a trapped-ion simulation platform (2311.18719v2)
Abstract: Quantum kernel methods leverage a kernel function computed by embedding input information into the Hilbert space of a quantum system. However, large Hilbert spaces can hinder generalization capability, and the scalability of quantum kernels becomes an issue. To overcome these challenges, various strategies under the concept of inductive bias have been proposed. Bandwidth optimization is a promising approach that can be implemented using quantum simulation platforms. We propose trapped-ion simulation platforms as a means to compute quantum kernels and demonstrate their effectiveness for binary classification tasks. We compare the performance of the proposed method with an optimized classical kernel and evaluate the robustness of the quantum kernel against noise. The results show that ion trap platforms are well-suited for quantum kernel computation and can achieve high accuracy with only a few qubits.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.