Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Quantum dynamics of a fully-blockaded Rydberg atom ensemble (2311.18616v1)

Published 30 Nov 2023 in quant-ph

Abstract: Classical simulation of quantum systems plays an important role in the study of many-body phenomena and in the benchmarking and verification of quantum technologies. Exact simulation is often limited to small systems because the dimension of the Hilbert space increases exponentially with the size of the system. For systems that possess a high degree of symmetry, however, classical simulation can reach much larger sizes. Here, we consider an ensemble of strongly interacting atoms with permutation symmetry, enabling the simulation of dynamics of hundreds of atoms at arbitrarily long evolution times. The system is realized by an ensemble of three-level atoms, where one of the levels corresponds to a highly excited Rydberg state. In the limit of all-to-all Rydberg blockade, the Hamiltonian is invariant under permutation of the atoms. Using techniques from representation theory, we construct a block-diagonal form of the Hamiltonian, where the size of the largest block increases only linearly with the system size. We apply this formalism to derive efficient pulse sequences to prepare arbitrary permutation-invariant quantum states. Moreover, we study the quantum dynamics following a quench, uncovering a parameter regime in which the system thermalizes slowly and exhibits pronounced revivals. Our results create new opportunities for the experimental and theoretical study of large interacting and nonintegrable quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. G. A. Álvarez, D. Suter, and R. Kaiser, Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins, Science 349, 846 (2015).
  2. M. Ueda, Quantum equilibration, thermalization and prethermalization in ultracold atoms, Nat. Rev. Phys. 2, 669 (2020).
  3. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
  4. I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nat. Phys. 8, 267 (2012).
  5. C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357, 995 (2017).
  6. C. Gross and W. S. Bakr, Quantum gas microscopy for single atom and spin detection, Nat. Phys. 17, 1316 (2021).
  7. A. M. Kaufman and K.-K. Ni, Quantum science with optical tweezer arrays of ultracold atoms and molecules, Nat. Phys. 17, 1324 (2021).
  8. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).
  9. L. Isenhower, M. Saffman, and K. Mølmer, Multibit Ck𝑘{}_{k}start_FLOATSUBSCRIPT italic_k end_FLOATSUBSCRIPTNOT quantum gates via Rydberg blockade, Quantum Inf. Process. 10, 755 (2011).
  10. M. Khazali and K. Mølmer, Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits, Phys. Rev. X 10, 021054 (2020).
  11. S. Jandura and G. Pupillo, Time-Optimal Two- and Three-Qubit Gates for Rydberg Atoms, Quantum 6, 712 (2022).
  12. R. H. Dicke, Coherence in Spontaneous Radiation Processes, Phys. Rev. 93, 99 (1954).
  13. W. Greiner and B. Müller, Quantum Mechanics: Symmetries (Springer, Berlin, Germany, 1989).
  14. D. Bacon, I. L. Chuang, and A. W. Harrow, Efficient Quantum Circuits for Schur and Clebsch-Gordan Transforms, Phys. Rev. Lett. 97, 170502 (2006).
  15. S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order, Phys. Rev. Lett. 97, 050401 (2006).
  16. B. Yadin, B. Morris, and K. Brandner, Thermodynamics of permutation-invariant quantum many-body systems: A group-theoretical framework, Phys. Rev. Res. 5, 033018 (2023).
  17. A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016).
  18. J. M. Radcliffe, Some properties of coherent spin states, J. Phys. A 4, 313 (1971).
  19. S. Sternberg, Group Theory and Physics (Cambridge University Press, Cambridge, UK, 1994).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com