Linear response theory for spin alignment of vector mesons in thermal media (2311.18400v2)
Abstract: We present a calculation of the spin alignment for unflavored vector mesons in thermalized quark-gluon plasma based on the Kubo formula in linear response theory. This is achieved by expanding the system to the first order of the coupling constant and the spatial gradient. The effect strongly relies on the vector meson's spectral functions which are determined by the interaction and medium properties. The spectral functions are calculated for the one-quark-loop self-energy with meson-quark interaction. The numerical results show that the correction to the spin alignment from the thermal shear tensor is of the order $10{-4}\sim10{-5}$ for the chosen values of quark-meson coupling constant, if the magnitude of thermal shear tensor is $10{-2}$.
- S. Barnett, Rev. Mod. Phys. 7, 129 (1935).
- A. Einstein and W. de Haas, Deutsche Physikalische Gesellschaft, Verhandlungen 17, 152 (1915).
- Phys. Rev. Lett. 94, 102301 (2005), nucl-th/0410079, [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
- S. A. Voloshin, (2004), nucl-th/0410089.
- Phys. Rev. C76, 044901 (2007), 0708.0035.
- Phys. Rev. C77, 024906 (2008), 0711.1253.
- J.-H. Gao et al., Phys. Rev. C77, 044902 (2008), 0710.2943.
- STAR, L. Adamczyk et al., Nature 548, 62 (2017), 1701.06657.
- STAR, J. Adam et al., Phys. Rev. C 98, 014910 (2018), 1805.04400.
- Q. Wang, Nucl. Phys. A967, 225 (2017), 1704.04022.
- Prog. Part. Nucl. Phys. 108, 103709 (2019), 1811.04409.
- F. Becattini and M. A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020), 2003.03640.
- Lect. Notes Phys. 987, 195 (2021), 2009.04803.
- (2020), 2010.08937.
- Acta Phys. Sin. (in Chinese) 72, 072501 (2023).
- Phys. Lett. B 629, 20 (2005), nucl-th/0411101.
- STAR, B. I. Abelev et al., Phys. Rev. C 77, 061902 (2008), 0801.1729.
- STAR, M. S. Abdallah et al., Nature 614, 244 (2023), 2204.02302.
- Phys. Rev. C 97, 034917 (2018), 1711.06008.
- Phys. Lett. B 817, 136325 (2021), 2010.01474.
- J.-H. Gao, Phys. Rev. D 104, 076016 (2021), 2105.08293.
- B. Müller and D.-L. Yang, Phys. Rev. D 105, L011901 (2022), 2110.15630.
- Phys. Rev. D 108, 016020 (2023), 2304.04181.
- Phys. Rev. D 101, 096005 (2020), 1910.13684, [Erratum: Phys.Rev.D 105, 099903 (2022)].
- Phys. Rev. D 102, 056013 (2020), 2007.05106.
- Phys. Rev. Lett. 131, 042304 (2023), 2205.15689.
- (2022), 2206.05868.
- Phys. Rept. 118, 1 (1985).
- J.-P. Blaizot and E. Iancu, Phys. Rept. 359, 355 (2002), hep-ph/0101103.
- J. Berges, AIP Conf. Proc. 739, 3 (2004), hep-ph/0409233.
- W. Cassing, Eur. Phys. J. ST 168, 3 (2009), 0808.0715.
- U. W. Heinz, Phys. Rev. Lett. 51, 351 (1983).
- Annals Phys. 173, 462 (1987).
- P. Zhuang and U. W. Heinz, Annals Phys. 245, 311 (1996), nucl-th/9502034.
- Phys. Rev. C 94, 024904 (2016), 1604.04036.
- Phys. Rev. D 100, 056021 (2019), 1902.06510.
- Phys. Rev. D 100, 056018 (2019), 1902.06513.
- Phys. Rev. Lett. 127, 052301 (2021), 2005.01506.
- Phys. Rev. D 104, 016022 (2021), 2103.04896.
- Annals Phys. 338, 32 (2013), 1303.3431.
- Phys. Rev. D 104, 016029 (2021), 2103.10636.
- (2023), 2308.14038.
- Sci. Bull. 68, 874 (2023), 2305.09114.
- X.-N. Wang, Nucl. Sci. Tech. 34, 15 (2023), 2302.00701.
- Acta Phys. Sin. (in Chinese) 72, 072502 (2023).
- F. Li and S. Y. F. Liu, (2022), 2206.11890.
- Phys. Rev. Res. 5, 013187 (2023), 2207.01111.
- Phys. Rev. C 104, 064901 (2021), 2106.00238.
- Phys. Lett. B 820, 136519 (2021), 2103.10917.
- Phys. Rev. Lett. 127, 142301 (2021), 2103.10403.
- STAR, T. Niida, Nucl. Phys. A 982, 511 (2019), 1808.10482.
- Phys. Rev. Lett. 127, 272302 (2021), 2103.14621.
- Statistical Mechanics of Nonequilibrium Processes, Basic Concepts, Kinetic TheoryStatistical Mechanics of Nonequilibrium Processes (Wiley, 1996).
- Statistical Mechanics of Nonequilibrium Processes, Statistical Mechanics of Nonequilibrium Processes. Volume 2: Relaxation and Hydrodynamic ProcessesStatistical Mechanics of Nonequilibrium Processes (Wiley, 1997).
- Theoretical and Mathematical Physics 40, 821 (1979).
- J. I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applicationsCambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
- A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984).
- J. Phys. G 19, 2013 (1993).
- Phys. Rev. D 92, 045022 (2015), 1506.01868.
- Phys. Rev. D 95, 103008 (2017), 1612.06167.
- Phys. Rev. Lett. 88, 132303 (2002), nucl-th/0111040.
- JHEP 09, 095 (2017), 1511.03646.
- H. A. Weldon, Phys. Rev. D 26, 1394 (1982).
- R. D. Pisarski, Phys. Rev. Lett. 63, 1129 (1989).
- E. Braaten and R. D. Pisarski, Nucl. Phys. B 337, 569 (1990).
- M. H. Thoma, (2000), hep-ph/0010164.
- M. L. Bellac, Thermal Field TheoryCambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
- C. Gale and J. I. Kapusta, Nucl. Phys. B 357, 65 (1991).
- J. I. Kapusta and C. Gale, Finite-Temperature Field TheoryCambridge Monographs on Mathematical Physics (Cambridge University Press, 2023).
- Prog. Part. Nucl. Phys. 127, 103989 (2022), 2201.07644.
- L. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium ProblemsFrontiers in Physics. A Lecture Note and Reprint Series (W.A. Benjamin, 1962).
- A. Fetter and J. Walecka, Quantum Theory of Many-particle SystemsDover Books on Physics (Dover Publications, 2003).
- F. Becattini et al., (2024), 2402.04540.
- (2023), 2306.05936.
- Y.-Z. Xu et al., Phys. Rev. D 100, 114038 (2019), 1911.05199.
- Y.-Z. Xu et al., Eur. Phys. J. C 81, 895 (2021), 2107.03488.
- Annals Phys. 154, 229 (1984).
- Particles 2, 197 (2019), 1902.01089.
- A. Andronic et al., Nucl. Phys. A 837, 65 (2010), 0911.4806.
- Nature 561, 321 (2018), 1710.09425.
- H. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020), 1911.08737.
- Phys. Rev. D 105, 114053 (2022), 2204.11440.
- Phys. Rev. D 107, 074033 (2023), 2211.16949.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.