Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Sachdev-Ye-Kitaev model on a noisy quantum computer (2311.17991v4)

Published 29 Nov 2023 in quant-ph, hep-lat, and hep-th

Abstract: We study the SYK model -- an important toy model for quantum gravity on IBM's superconducting qubit quantum computers. By using a graph-coloring algorithm to minimize the number of commuting clusters of terms in the qubitized Hamiltonian, we find the gate complexity of the time evolution using the first-order product formula for $N$ Majorana fermions is $\mathcal{O}(N5 J{2}t2/\epsilon)$ where $J$ is the dimensionful coupling parameter, $t$ is the evolution time, and $\epsilon$ is the desired precision. With this improved resource requirement, we perform the time evolution for $N=6, 8$ with maximum two-qubit circuit depth of 343. We perform different error mitigation schemes on the noisy hardware results and find good agreement with the exact diagonalization results on classical computers and noiseless simulators. In particular, we compute return probability after time $t$ and out-of-time order correlators (OTOC) which is a standard observable of quantifying the chaotic nature of quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, arXiv:hep-th/9802150.
  2. S. Catterall, R. G. Jha, D. Schaich, and T. Wiseman, “Testing holography using lattice super-Yang-Mills theory on a 2-torus,” Phys. Rev. D 97 no. 8, (2018) 086020, arXiv:1709.07025 [hep-th].
  3. S. Catterall, J. Giedt, R. G. Jha, D. Schaich, and T. Wiseman, “Three-dimensional super-Yang–Mills theory on the lattice and dual black branes,” Phys. Rev. D 102 no. 10, (2020) 106009, arXiv:2010.00026 [hep-th].
  4. S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum Heisenberg magnet,” Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030.
  5. A. Kitaev, “A simple model of quantum holography,”. http://online.kitp.ucsb.edu/online/entangled15/.
  6. S. Sachdev, “Bekenstein-Hawking Entropy and Strange Metals,” Phys. Rev. X 5 no. 4, (2015) 041025, arXiv:1506.05111 [hep-th].
  7. J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,” Phys. Rev. D 94 no. 10, (2016) 106002, arXiv:1604.07818 [hep-th].
  8. J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP 08 (2016) 106, arXiv:1503.01409 [hep-th].
  9. G. Gur-Ari, R. Mahajan, and A. Vaezi, “Does the SYK model have a spin glass phase?,” JHEP 11 (2018) 070, arXiv:1806.10145 [hep-th].
  10. B. Kobrin, Z. Yang, G. D. Kahanamoku-Meyer, C. T. Olund, J. E. Moore, D. Stanford, and N. Y. Yao, “Many-Body Chaos in the Sachdev-Ye-Kitaev Model,” Phys. Rev. Lett. 126 no. 3, (2021) 030602, arXiv:2002.05725 [hep-th].
  11. R.-Q. Yang and K.-Y. Kim, “Time evolution of the complexity in chaotic systems: a concrete example,” JHEP 05 (2020) 045, arXiv:1906.02052 [hep-th].
  12. L. García-Álvarez, I. L. Egusquiza, L. Lamata, A. del Campo, J. Sonner, and E. Solano, “Digital Quantum Simulation of Minimal AdS/CFT,” Phys. Rev. Lett. 119 no. 4, (2017) 040501, arXiv:1607.08560 [quant-ph].
  13. Z. Luo, Y.-Z. You, J. Li, C.-M. Jian, D. Lu, C. Xu, B. Zeng, and R. Laflamme, “Quantum Simulation of the Non-Fermi-Liquid State of Sachdev-Ye-Kitaev Model,” npj Quantum Inf. 5 (2019) 53, arXiv:1712.06458 [quant-ph].
  14. R. Babbush, D. W. Berry, and H. Neven, “Quantum Simulation of the Sachdev-Ye-Kitaev Model by Asymmetric Qubitization,” Phys. Rev. A 99 no. 4, (2019) 040301, arXiv:1806.02793 [quant-ph].
  15. A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, “A Theory of Trotter Error,” arXiv e-prints (Dec., 2019) arXiv:1912.08854, arXiv:1912.08854 [quant-ph].
  16. S. Lloyd, “Universal quantum simulators,” Science 273 no. 5278, (Aug., 1996) 1073–1078. https://doi.org/10.1126/science.273.5278.1073.
  17. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2 (2018) 79, arXiv:1801.00862 [quant-ph].
  18. S. Barison, F. Vicentini, and G. Carleo, “An efficient quantum algorithm for the time evolution of parameterized circuits,” Quantum 5 (July, 2021) 512, arXiv:2101.04579 [quant-ph].
  19. J. W. Z. Lau, T. Haug, L. C. Kwek, and K. Bharti, “NISQ Algorithm for Hamiltonian simulation via truncated Taylor series,” SciPost Physics 12 no. 4, (Apr., 2022) 122, arXiv:2103.05500 [quant-ph].
  20. A. Kay, “Tutorial on the Quantikz Package,” arXiv:1809.03842 [quant-ph].
  21. V. Shende, S. Bullock, and I. Markov, “Synthesis of quantum-logic circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25 no. 6, (June, 2006) 1000–1010. https://doi.org/10.1109/tcad.2005.855930.
  22. D. Brélaz, “New methods to color the vertices of a graph,” Commun. ACM 22 no. 4, (Apr, 1979) 251–256. https://doi.org/10.1145/359094.359101.
  23. E. van den Berg and K. Temme, “Circuit optimization of hamiltonian simulation by simultaneous diagonalization of pauli clusters,” Quantum 4 (Sep, 2020) 322. https://doi.org/10.22331%2Fq-2020-09-12-322.
  24. K. Gui, T. Tomesh, P. Gokhale, Y. Shi, F. T. Chong, M. Martonosi, and M. Suchara, “Term Grouping and Travelling Salesperson for Digital Quantum Simulation,” arXiv e-prints (Jan., 2020) arXiv:2001.05983, arXiv:2001.05983 [quant-ph].
  25. D. Miller, L. E. Fischer, I. O. Sokolov, P. K. Barkoutsos, and I. Tavernelli, “Hardware-Tailored Diagonalization Circuits,” arXiv:2203.03646 [quant-ph].
  26. T. Kurita, M. Morita, H. Oshima, and S. Sato, “Pauli string partitioning algorithm with the ising model for simultaneous measurement,” 2022.
  27. E. M. Murairi and M. J. Cervia, “Reducing Circuit Depth with Qubitwise Diagonalization,” arXiv:2306.00170 [quant-ph].
  28. A. Jena, S. Genin, and M. Mosca, “Pauli Partitioning with Respect to Gate Sets,” arXiv e-prints (July, 2019) arXiv:1907.07859, arXiv:1907.07859 [quant-ph].
  29. V. Verteletskyi, T.-C. Yen, and A. F. Izmaylov, “Measurement optimization in the variational quantum eigensolver using a minimum clique cover,” J. Chem. Phys. 152 no. 12, (Mar., 2020) 124114, arXiv:1907.03358 [quant-ph].
  30. E. M. Murairi, M. J. Cervia, H. Kumar, P. F. Bedaque, and A. Alexandru, “How many quantum gates do gauge theories require?,” Phys. Rev. D 106 no. 9, (2022) 094504, arXiv:2208.11789 [hep-lat].
  31. T. Numasawa, “Late time quantum chaos of pure states in random matrices and in the Sachdev-Ye-Kitaev model,” Phys. Rev. D 100 no. 12, (2019) 126017, arXiv:1901.02025 [hep-th].
  32. Y. Liu, M. A. Nowak, and I. Zahed, “Disorder in the Sachdev-Yee-Kitaev Model,” Phys. Lett. B 773 (2017) 647–653, arXiv:1612.05233 [hep-th].
  33. J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, “Black Holes and Random Matrices,” JHEP 05 (2017) 118, arXiv:1611.04650 [hep-th]. [Erratum: JHEP 09, 002 (2018)].
  34. J. J. Wallman and J. Emerson, “Noise tailoring for scalable quantum computation via randomized compiling,” Phys. Rev. A 94 no. 5, (Nov., 2016) 052325, arXiv:1512.01098 [quant-ph].
  35. S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, “Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer,” Phys. Rev. D 106 no. 7, (2022) 074502, arXiv:2205.09247 [hep-lat].
  36. M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer, and W. A. de Jong, “Mitigating depolarizing noise on quantum computers with noise-estimation circuits,” Phys. Rev. Lett. 127 (Dec, 2021) 270502. https://link.aps.org/doi/10.1103/PhysRevLett.127.270502.
  37. P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta, “Scalable mitigation of measurement errors on quantum computers,” PRX Quantum 2 (Nov, 2021) 040326. https://link.aps.org/doi/10.1103/PRXQuantum.2.040326.
  38. L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58 (Oct, 1998) 2733–2744. https://link.aps.org/doi/10.1103/PhysRevA.58.2733.
  39. P. Zanardi, “Symmetrizing evolutions,” Physics Letters A 258 no. 2, (1999) 77–82. https://www.sciencedirect.com/science/article/pii/S0375960199003655.
  40. D. Vitali and P. Tombesi, “Using parity kicks for decoherence control,” Phys. Rev. A 59 (Jun, 1999) 4178–4186. https://link.aps.org/doi/10.1103/PhysRevA.59.4178.
  41. N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz, and D. A. Lidar, “Dynamical decoupling for superconducting qubits: a performance survey,” arXiv:2207.03670 [quant-ph].
  42. P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, “Chaos in quantum channels,” JHEP 02 (2016) 004, arXiv:1511.04021 [hep-th].
  43. W. Fu and S. Sachdev, “Numerical study of fermion and boson models with infinite-range random interactions,” Phys. Rev. B 94 no. 3, (2016) 035135, arXiv:1603.05246 [cond-mat.str-el].
  44. A. Kitaev and S. J. Suh, “The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual,” JHEP 05 (2018) 183, arXiv:1711.08467 [hep-th].
  45. E. Lantagne-Hurtubise, S. Plugge, O. Can, and M. Franz, “Diagnosing quantum chaos in many-body systems using entanglement as a resource,” Phys. Rev. Res. 2 no. 1, (2020) 013254, arXiv:1907.01628 [cond-mat.str-el].
  46. A. I. Larkin and Y. N. Ovchinnikov, “Quasiclassical Method in the Theory of Superconductivity,” Soviet Journal of Experimental and Theoretical Physics 28 (June, 1969) 1200.
  47. B. Yan, L. Cincio, and W. H. Zurek, “Information scrambling and loschmidt echo,” Phys. Rev. Lett. 124 (Apr, 2020) 160603. https://link.aps.org/doi/10.1103/PhysRevLett.124.160603.
  48. C. Sünderhauf, L. Piroli, X.-L. Qi, N. Schuch, and J. I. Cirac, “Quantum chaos in the Brownian SYK model with large finite N𝑁Nitalic_N: OTOCs and tripartite information,” JHEP 11 (2019) 038, arXiv:1908.00775 [quant-ph].
  49. Y. Cao, Y.-N. Zhou, T.-T. Shi, and W. Zhang, “Towards quantum simulation of Sachdev-Ye-Kitaev model,” Sci. Bull. 65 (2020) 1170–1176, arXiv:2003.01514 [cond-mat.dis-nn].
  50. T. Anegawa, N. Iizuka, A. Mukherjee, S. K. Sake, and S. P. Trivedi, “Sparse random matrices and Gaussian ensembles with varying randomness,” arXiv:2305.07505 [hep-th].
  51. J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J. Du, “Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator,” Phys. Rev. X 7 (Jul, 2017) 031011. https://link.aps.org/doi/10.1103/PhysRevX.7.031011.
  52. M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J. Bollinger, and A. M. Rey, “Measuring out-of-time-order correlations and multiple quantum spectra in a trapped ion quantum magnet,” Nature Phys. 13 (2017) 781, arXiv:1608.08938 [quant-ph].
  53. N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M. Stamper-Kurn, J. E. Moore, and E. A. Demler, “Interferometric Approach to Probing Fast Scrambling,” arXiv:1607.01801 [quant-ph].
  54. D. Aggarwal, S. Raj, B. K. Behera, and P. K. Panigrahi, “Application of quantum scrambling in Rydberg atom on IBM quantum computer,” arXiv e-prints (June, 2018) arXiv:1806.00781, arXiv:1806.00781 [quant-ph].
  55. B. Vermersch, A. Elben, L. M. Sieberer, N. Y. Yao, and P. Zoller, “Probing scrambling using statistical correlations between randomized measurements,” Phys. Rev. X 9 no. 2, (2019) 021061, arXiv:1807.09087 [quant-ph].
  56. X. Mi et al., “Information scrambling in quantum circuits,” Science 374 no. 6574, (2021) abg5029, arXiv:2101.08870 [quant-ph].
  57. M. Asaduzzaman, S. Catterall, Y. Meurice, and G. C. Toga, “Quantum Ising model on two dimensional anti-de Sitter space,” arXiv:2309.04383 [quant-ph].
  58. E. Van Den Berg, Z. K. Minev, and K. Temme, “Model-free readout-error mitigation for quantum expectation values,” Physical Review A 105 no. 3, (2022) 032620.
  59. C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and approximate unitary 2-designs and their application to fidelity estimation,” Physical Review A 80 no. 1, (2009) 012304.
  60. Y. Nakata et al., “Quantum Circuits for Exact Unitary t-Designs and Applications to Higher-Order Randomized Benchmarking,” PRX Quantum 2 no. 3, (2021) 030339, arXiv:2102.12617 [quant-ph].
  61. S. Xu, L. Susskind, Y. Su, and B. Swingle, “A Sparse Model of Quantum Holography,” arXiv:2008.02303 [cond-mat.str-el].
  62. A. M. García-García, Y. Jia, D. Rosa, and J. J. M. Verbaarschot, “Sparse Sachdev-Ye-Kitaev model, quantum chaos and gravity duals,” Phys. Rev. D 103 no. 10, (2021) 106002, arXiv:2007.13837 [hep-th].
  63. M. Hanada, A. Jevicki, X. Liu, E. Rinaldi, and M. Tezuka, “A model of randomly-coupled Pauli spins,” arXiv:2309.15349 [hep-th].
  64. D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, “Sachdev-Ye-Kitaev models and beyond: Window into non-Fermi liquids,” Rev. Mod. Phys. 94 no. 3, (2022) 035004, arXiv:2109.05037 [cond-mat.str-el].
  65. M. Asaduzzaman, R. G. Jha, and B. Sambasivam, “A model of quantum gravity on a noisy quantum computer - notebooks and quantum circuits release,” Zenodo (November, 2023) . https://zenodo.org/record/10202045.
  66. J. K. Iverson and J. Preskill, “Coherence in logical quantum channels,” New Journal of Physics 22 no. 7, (July, 2020) 073066, arXiv:1912.04319 [quant-ph].
  67. M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer, and W. A. de Jong, “Mitigating depolarizing noise on quantum computers with noise-estimation circuits,” Phys. Rev. L 127 (2021) 270502, arXiv:2103.08591 [quant-ph].
  68. A. He, B. Nachman, W. A. de Jong, and C. W. Bauer, “Zero-noise extrapolation for quantum-gate error mitigation with identity insertions,” Phys. Rev. A 102 no. 1, (2020) 012426, arXiv:2003.04941 [quant-ph].
  69. P. Nation, “Generating Pauli-twirled circuits in Qiskit,”. https://quantum-enablement.org/posts/2023/2023-02-02-pauli_twirling.html.
  70. X. Chen, T. Zhou, and C. Xu, “Measuring the distance between quantum many-body wave functions,” Journal of Statistical Mechanics: Theory and Experiment 2018 no. 7, (2018) 073101.
  71. M. Asaduzzaman, S. Catterall, G. C. Toga, Y. Meurice, and R. Sakai, “Quantum simulation of the N-flavor Gross-Neveu model,” Phys. Rev. D 106 no. 11, (2022) 114515, arXiv:2208.05906 [hep-lat].
  72. D. C. McKay, I. Hincks, E. J. Pritchett, M. Carroll, L. C. G. Govia, and S. T. Merkel, “Benchmarking Quantum Processor Performance at Scale,” arXiv:2311.05933 [quant-ph].
Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper’s main contribution is reducing circuit complexity from O(N^10) to O(N^5) by applying a graph-coloring algorithm.
  • The study demonstrates quantum simulations of the SYK model for N=6 and N=8 Majorana fermions using a Lie-Trotter-Suzuki approach to optimize Trotter steps.
  • Error mitigation techniques such as Pauli twirling and randomized compiling are employed to align noisy quantum outputs with exact diagonalization results.

Analysis of the Sachdev-Ye-Kitaev Model on Noisy Quantum Computers

This paper presents an exploration of the Sachdev-Ye-Kitaev (SYK) model through IBM's superconducting qubit quantum computers, focusing on the optimization of quantum circuit complexity and error mitigation. The SYK model, with its significant implications in quantum gravity and chaos theory, serves as an ideal testbed for demonstrating the potential and challenges of current quantum computing hardware.

The paper's primary contribution is the enhancement of circuit complexity for simulating the SYK model. The authors demonstrate a significant improvement by reducing the complexity scaling from O(N10)\mathcal{O}(N^{10}) to O(N5)\mathcal{O}(N^{5}) when mapping the Hamiltonian of the SYK model to qubits using a graph-coloring algorithm. This improvement is achieved without sacrificing the fidelity of the simulation, which is critical for handling larger instances of the SYK model.

For practical simulations, the authors execute quantum circuits on IBM processors, demonstrating time evolution calculations for the SYK model with N=6N = 6 and N=8N = 8 Majorana fermions. They implemented a first-order Lie-Trotter-Suzuki product formula while optimizing the number of Trotter steps to reduce error accumulation. They found the necessary ECR gate depth for these computations was 343 for maximum depth, showcasing the hardware's capability in handling complex quantum simulations but also highlighting the substantial resources required even for relatively small systems.

From an analytical standpoint, the research underscores the critical role of error mitigation in quantum simulations. Basic methods such as Pauli twirling/randomized compiling and self-mitigation are employed to address gate noise and decoherence, demonstrating their effectiveness in aligning quantum computer outputs with exact diagonalization results.

In terms of physical analysis, the researchers compute observables like the vacuum return probability and the out-of-time order correlators (OTOC), which are essential metrics for studying the chaotic nature of quantum systems. The paper showcases the ability to replicate expected behaviors such as the ramp feature in return probabilities when averaged over disorder, a characteristic feature of quantum chaotic systems.

The implications of this paper are twofold. Practically, it solidifies the position of superconducting qubit architectures as viable, albeit currently limited, platforms for simulating complex quantum models like SYK. By improving circuit complexity, the research provides a framework that can be scaled with technological advances in coherence times, gate fidelities, and connectivity. Theoretically, the work paves the way for further exploration of quantum chaotic behaviors and the verification of holographic principles in quantum systems, with the eventual goal of bridging gaps between theoretical predictions and empirical observations.

Looking forward, this research invites future exploration into more complex SYK variants with higher fermion numbers and interaction terms. Improved quantum hardware with advanced connectivity, such as trapped-ion systems, may provide additional pathways for simulation with potentially lower gate errors, enabling insights into the holographic duality and strongly coupled field theories. Additionally, further developments in error mitigation and circuit optimization could expand the practical limits of such quantum simulations, allowing for broader applications in quantum many-body physics and beyond.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com