Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model (2311.17112v2)

Published 28 Nov 2023 in cs.CV

Abstract: Parameter-efficient fine-tuning (PEFT) is an effective methodology to unleash the potential of large foundation models in novel scenarios with limited training data. In the computer vision community, PEFT has shown effectiveness in image classification, but little research has studied its ability for image segmentation. Fine-tuning segmentation models usually require a heavier adjustment of parameters to align the proper projection directions in the parameter space for new scenarios. This raises a challenge to existing PEFT algorithms, as they often inject a limited number of individual parameters into each block, which prevents substantial adjustment of the projection direction of the parameter space due to the limitation of Hidden Markov Chain along blocks. In this paper, we equip PEFT with a cross-block orchestration mechanism to enable the adaptation of the Segment Anything Model (SAM) to various downstream scenarios. We introduce a novel inter-block communication module, which integrates a learnable relation matrix to facilitate communication among different coefficient sets of each PEFT block's parameter space. Moreover, we propose an intra-block enhancement module, which introduces a linear projection head whose weights are generated from a hyper-complex layer, further enhancing the impact of the adjustment of projection directions on the entire parameter space. Extensive experiments on diverse benchmarks demonstrate that our proposed approach consistently improves the segmentation performance significantly on novel scenarios with only around 1K additional parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zelin Peng (14 papers)
  2. Zhengqin Xu (9 papers)
  3. Zhilin Zeng (4 papers)
  4. Lingxi Xie (137 papers)
  5. Qi Tian (314 papers)
  6. Wei Shen (181 papers)
Citations (5)