Transformer Wave Function for two dimensional frustrated magnets: emergence of a Spin-Liquid Phase in the Shastry-Sutherland Model (2311.16889v4)
Abstract: Understanding quantum magnetism in two-dimensional systems represents a lively branch in modern condensed-matter physics. In the presence of competing super-exchange couplings, magnetic order is frustrated and can be suppressed down to zero temperature. Still, capturing the correct nature of the exact ground state is a highly complicated task, since energy gaps in the spectrum may be very small and states with different physical properties may have competing energies. Here, we introduce a variational Ansatz for two-dimensional frustrated magnets by leveraging the power of representation learning. The key idea is to use a particular deep neural network with real-valued parameters, a so-called Transformer, to map physical spin configurations into a high-dimensional feature space. Within this abstract space, the determination of the ground-state properties is simplified and requires only a shallow output layer with complex-valued parameters. We illustrate the efficacy of this variational Ansatz by studying the ground-state phase diagram of the Shastry-Sutherland model, which captures the low-temperature behavior of SrCu$_2$(BO$_3$)$_2$ with its intriguing properties. With highly accurate numerical simulations, we provide strong evidence for the stabilization of a spin-liquid between the plaquette and antiferromagnetic phases. In addition, a direct calculation of the triplet excitation at the $\Gamma$ point provides compelling evidence for a gapless spin liquid. Our findings underscore the potential of Neural-Network Quantum States as a valuable tool for probing uncharted phases of matter, and open up new possibilities for establishing the properties of many-body systems.
- R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
- L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017).
- A. Kitaev, Ann. Phys. 321, 2 (2006), january Special Issue.
- M. Norman, Rev. Mod. Phys. 88, 041002 (2016).
- B. Shastry and B. Sutherland, Physica B+C 108, 1069 (1981).
- S. Miyahara and K. Ueda, Phys. Rev. Lett. 82, 3701 (1999).
- P. Corboz and F. Mila, Phys. Rev. Lett. 112, 147203 (2014).
- M. Albrecht and F. Mila, Europhysics Letters 34, 145 (1996).
- A. Koga and N. Kawakami, Phys. Rev. Lett. 84, 4461 (2000).
- P. Corboz and F. Mila, Phys. Rev. B 87, 115144 (2013).
- W.-Y. Liu, X.-T. Zhang, Z. Wang, S.-S. Gong, W.-Q. Chen, and Z.-C. Gu, “Deconfined quantum criticality with emergent symmetry in the extended shastry-sutherland model,” (2023), arXiv:2309.10955 [cond-mat.str-el] .
- A. Keleş and E. Zhao, Phys. Rev. B 105, L041115 (2022).
- F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, 2017).
- P. Fazekas and P. Anderson, Phil. Mag. 30, 423 (1974).
- P. Anderson, Science 235, 1196 (1987).
- Z. Zhu and S. R. White, Phys. Rev. B 92, 041105 (2015).
- G. Carleo and M. Troyer, Science 355, 602 (2017).
- A. Szabó and C. Castelnovo, Phys. Rev. Res. 2, 033075 (2020).
- M. Hibat-Allah, R. G. Melko, and J. Carrasquilla, “Supplementing recurrent neural network wave functions with symmetry and annealing to improve accuracy,” (2022), arXiv:2207.14314 [cond-mat.dis-nn] .
- A. Chen and M. Heyl, “Efficient optimization of deep neural quantum states toward machine precision,” (2023), arXiv:2302.01941 [cond-mat.dis-nn] .
- M. Mezera, J. Menšíková, P. Baláž, and M. Žonda, “Neural network quantum states analysis of the shastry-sutherland model,” (2023), arXiv:2303.14108 [cond-mat.dis-nn] .
- R. Rende, L. L. Viteritti, L. Bardone, F. Becca, and S. Goldt, “A simple linear algebra identity to optimize large-scale neural network quantum states,” (2023a), arXiv:2310.05715 [cond-mat.str-el] .
- Y. Nomura and M. Imada, Phys. Rev. X 11, 031034 (2021).
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” (2021).
- K. Sprague and S. Czischek, “Variational monte carlo with large patched transformers,” (2023), arXiv:2306.03921 [quant-ph] .
- Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” (2014), arXiv:1206.5538 [cs.LG] .
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” (2017).
- X. Liang, M. Li, Q. Xiao, H. An, L. He, X. Zhao, J. Chen, C. Yang, F. Wang, H. Qian, L. Shen, D. Jia, Y. Gu, X. Liu, and Z. Wei, “21296superscript212962^{1296}2 start_POSTSUPERSCRIPT 1296 end_POSTSUPERSCRIPT exponentially complex quantum many-body simulation via scalable deep learning method,” (2022), arXiv:2204.07816 [quant-ph] .
- S. Sorella, Phys. Rev. B 71, 241103 (2005).
- Y. Nomura, Journal of Physics: Condensed Matter 33, 174003 (2021).
- W. Marshall, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 232, 48 (1955).
- L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and projection for dimension reduction,” (2020), arXiv:1802.03426 [stat.ML] .
- R. Rende, F. Gerace, A. Laio, and S. Goldt, “Optimal inference of a generalised potts model by single-layer transformers with factored attention,” (2023b), arXiv:2304.07235 .
- R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T.-Y. Liu, “On layer normalization in the transformer architecture,” (2020), arXiv:2002.04745 [cs.LG] .
- Z. Dai, H. Liu, Q. V. Le, and M. Tan, “Coatnet: Marrying convolution and attention for all data sizes,” (2021), arXiv:2106.04803 .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.