Combining critical and quantum metrology (2311.16472v2)
Abstract: Critical metrology relies on the precise preparation of a system in its ground state near a quantum phase transition point where quantum correlations get very strong. Typically this increases the quantum Fisher information with respect to changes in system parameters and thus improves the optimally possible measurement precision limited by the Cram\'er-Rao bound. Hence critical metrology involves encoding information about the unknown parameter in changes of the system's ground state. Conversely, in conventional metrology methods like Ramsey interferometry, the eigenstates of the system remain unchanged, and information about the unknown parameter is encoded in the relative phases that excited system states accumulate during their time evolution. Here we introduce an approach combining these two methodologies into a unified protocol applicable to closed and driven-dissipative systems. We show that the quantum Fisher information in this case exhibits an additional interference term originating from the interplay between eigenstate and relative phase changes. We provide analytical expressions for the quantum and classical Fisher information in such a setup, elucidating as well a straightforward measurement approach that nearly attains the maximum precision permissible under the Cram\'er-Rao bound. We showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
- A. G. J. MacFarlane, J. P. Dowling, and G. J. Milburn, Quantum technology: the second quantum revolution, Phil. Trans. R. Soc. A. 361, 1655 (2003).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
- V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Photonics 5, 222 (2011).
- C. Hotter, L. Ostermann, and H. Ritsch, Cavity sub- and superradiance for transversely driven atomic ensembles, Phys. Rev. Res. 5, 013056 (2023).
- O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474, 1 (2009).
- R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, The elusive heisenberg limit in quantum-enhanced metrology, Nature Communications 3, 1063 (2012).
- L. Ostermann, H. Ritsch, and C. Genes, Protected state enhanced quantum metrology with interacting two-level ensembles, Phys. Rev. Lett. 111, 123601 (2013).
- E. Davis, G. Bentsen, and M. Schleier-Smith, Approaching the heisenberg limit without single-particle detection, Phys. Rev. Lett. 116, 053601 (2016).
- F. Fröwis, P. Sekatski, and W. Dür, Detecting large quantum fisher information with finite measurement precision, Phys. Rev. Lett. 116, 090801 (2016).
- S. P. Nolan, S. S. Szigeti, and S. A. Haine, Optimal and robust quantum metrology using interaction-based readouts, Phys. Rev. Lett. 119, 193601 (2017).
- S. Colombo, E. Pedrozo-Peñafiel, and V. Vuletić, Entanglement-enhanced optical atomic clocks, Applied Physics Letters 121 (2022b).
- G. Salvatori, A. Mandarino, and M. G. A. Paris, Quantum metrology in lipkin-meshkov-glick critical systems, Phys. Rev. A 90, 022111 (2014).
- I. Frérot and T. Roscilde, Quantum critical metrology, Phys. Rev. Lett. 121, 020402 (2018).
- K. Gietka and T. Busch, Inverted harmonic oscillator dynamics of the nonequilibrium phase transition in the dicke model, Phys. Rev. E 104, 034132 (2021).
- K. Gietka, L. Ruks, and T. Busch, Understanding and Improving Critical Metrology. Quenching Superradiant Light-Matter Systems Beyond the Critical Point, Quantum 6, 700 (2022).
- S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994).
- J. B. Brask, Gaussian states and operations – a quick reference (2022), arXiv:2102.05748 [quant-ph] .
- S. M. Kay, Fundamentals of statistical signal processing: estimation theory (Prentice-Hall, Inc., 1993).
- B. M. Garraway, The dicke model in quantum optics: Dicke model revisited, Phil. Trans. R. Soc. A. 369, 1137 (2011).
- I. Aedo and L. Lamata, Analog quantum simulation of generalized dicke models in trapped ions, Phys. Rev. A 97, 042317 (2018).
- L. Bakemeier, A. Alvermann, and H. Fehske, Quantum phase transition in the dicke model with critical and noncritical entanglement, Phys. Rev. A 85, 043821 (2012).
- K. Gietka, Squeezing by critical speeding up: Applications in quantum metrology, Phys. Rev. A 105, 042620 (2022a).
- K. Gietka, Harnessing center-of-mass excitations in quantum metrology, Phys. Rev. Res. 4, 043074 (2022b).
- K. Gietka, C. Hotter, and H. Ritsch, Unique steady-state squeezing in a driven quantum rabi model (2023), arXiv:2305.14290 [quant-ph] .
- M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392, 45 (1984).
- L. Campos Venuti and P. Zanardi, Quantum critical scaling of the geometric tensors, Phys. Rev. Lett. 99, 095701 (2007).
- V. P. Pavlov, D. Porras, and P. A. Ivanov, Quantum metrology with critical driven-dissipative collective spin system, Physica Scripta 98, 095103 (2023).
- S. Ashhab and F. Nori, Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states, Phys. Rev. A 81, 042311 (2010).
- F. Beaudoin, J. M. Gambetta, and A. Blais, Dissipation and ultrastrong coupling in circuit qed, Phys. Rev. A 84, 043832 (2011).
- M.-J. Hwang, P. Rabl, and M. B. Plenio, Dissipative phase transition in the open quantum rabi model, Phys. Rev. A 97, 013825 (2018).
- K. Gietka and H. Ritsch, Squeezing and overcoming the heisenberg scaling with spin-orbit coupled quantum gases, Phys. Rev. Lett. 130, 090802 (2023).
- G. Chen, J. Q. Liang, and S. Jia, Interaction-induced lipkin-meshkov-glick model in a bose-einstein condensate inside an optical cavity, Opt. Express 17, 19682 (2009).