Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precision magnetometry exploiting excited state quantum phase transitions (2306.01126v5)

Published 1 Jun 2023 in quant-ph and cond-mat.stat-mech

Abstract: Critical behaviour in phase transitions is a resource for enhanced precision metrology. The reason is that the function, known as Fisher information, is superextensive at critical points, and, at the same time, quantifies performances of metrological protocols. Therefore, preparing metrological probes at phase transitions provides enhanced precision in measuring the transition control parameter. We focus on the Lipkin-Meshkov-Glick model that exhibits excited state quantum phase transitions at different magnetic fields. Resting on the model spectral properties, we show broad peaks of the Fisher information, and propose efficient schemes for precision magnetometry. The Lipkin-Meshkov-Glick model was first introduced for superconductivity and for nuclear systems, and recently realised in several condensed matter platforms. The above metrological schemes can be also exploited to measure microscopic properties of systems able to simulate the Lipkin-Meshkov-Glick model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (116)
  1. C. W. Helstrom, Quantum detection and estimation theory, Academic, Press New York (1976).
  2. A. S. Holevo, Probabilistic and Statistical Aspect of Quantum Theory, North-Holland, Amsterdam (1982).
  3. Quantum Measurement and Control, Cambridge University Press (2009).
  4. M. G. A. Paris, Quantum estimation for quantum technology, Int. J. Quantum Inf. 07, 125 (2009).
  5. Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
  6. Quantum-enhanced measurements without entanglement, Rev. Mod. Phys. 90, 035006 (2018).
  7. E. Göbel and U. Siefner, Quantum Metrology Foundation of Units and Measurements, Wiley-VCH (2015).
  8. W. Nawrocki, Introduction to Quantum Metrology Quantum Standards and Instrumentation, Springer (2015).
  9. Atomic clock performance enabling geodesy below the centimetre level, Nature 564, 87 (2018).
  10. Improvement of Frequency Standards with Quantum Entanglement, Phys. Rev. Lett. 79, 3865 (1997).
  11. B. M. Escher, R. L. de Matos Filho and L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nat. Phys. 7, 406 (2010).
  12. J. Kołodyński and R. Demkowicz-Dobrzański, Phase estimation without a priori phase knowledge in the presence of loss, Phys. Rev. A 82, 053804 (2010).
  13. R. Demkowicz-Dobrzański, J. Czajkowski and P. Sekatski, Adaptive Quantum Metrology under General Markovian Noise, Phys. Rev. X 7, 041009 (2017).
  14. Achieving the Heisenberg limit in quantum metrology using quantum error correction, Nat. Commun. 9, 78 (2018).
  15. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  16. Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys. 94, 015004 (2022).
  17. S.-J. Gu, Fidelity approach to quantum phase transitions, Int. J. Mod. Phys. B 24, 4371 (2010).
  18. Q. Guan and R. J. Lewis-Swan, Identifying and harnessing dynamical phase transitions for quantum-enhanced sensing, Phys. Rev. Res. 3, 033199 (2021).
  19. Dynamical quantum phase transitions in a spinor bose-einstein condensate and criticality enhanced quantum sensing, Phys. Rev. Res. 5, 013087 (2023).
  20. L. Banchi, P. Giorda and P. Zanardi, Quantum information-geometry of dissipative quantum phase transitions, Phys. Rev. E 89, 022102 (2014).
  21. U. Marzolino and T. Prosen, Fisher information approach to nonequilibrium phase transitions in a quantum XXZ spin chain with boundary noise, Phys. Rev. B 96, 104402 (2017).
  22. Critical parametric quantum sensing, npj Quant. Inf. 9, 23 (2023).
  23. D. Šafránek, Discontinuities of the quantum Fisher information and the Bures metric, Phys. Rev. A 95, 052320 (2017).
  24. S. Zhou and L. Jiang, An exact correspondence between the quantum Fisher information and the Bures metric, ArXiv:1910.08473 (2019).
  25. Scaling dimension of fidelity susceptibility in quantum phase transitions, Europhys. Lett. 87, 10003 (2009).
  26. Quantum geometric tensor and quantum phase transitions in the Lipkin-Meshkov-Glick model, Phys. Rev. B 103, 174104 (2021).
  27. J. Khalouf-Rivera, M. Carvajal and F. Pérez-Bernal, Quantum fidelity susceptibility in excited state quantum phase transitions: application to the bending spectra of nonrigid molecules, SciPost Phys. 12, 002 (2022).
  28. Excited state quantum phase transitions in many-body system, Ann. Phys. (NY) 323, 1106 (2008).
  29. P. Cejnar and P. Stránský, Impact of quantum phase transitions on excited-level dynamics, Phys. Rev. E 78, 031130 (2008).
  30. P. Cejnar and J. Jolie, Quantum phase transitions in the interacting boson model, Progr. Part. Nucl. Phys. 62, 210 (2009).
  31. P. Strànsky and P. Cejnar, Classification of excited-state quantum phase transitions for arbitrary number of degrees of freedom, Phys. Lett. A 380, 2637 (2016).
  32. Excited-state quantum phase transitions, J. Phys. A 54, 133001 (2021).
  33. On Field Theories with Degenerate Ground States, Ann. Phys. 19, 14 (1961).
  34. W. Thirring and A. Wehrl, On the Mathematical Structure of the B. C. S.-Model, Comm. Math. Phys. 4, 303 (1967).
  35. W. Thirring, On the Mathematical Structure of the B. C. S.-Model.II, Comm. Math. Phys. 7, 181 (1968).
  36. H. J. Lipkin, N. Meshkov and A. J. Glick, Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory, Nucl. Phys. 62, 188 (1965).
  37. H. J. Lipkin, N. Meshkov and A. J. Glick, Validity of many-body approximation methods for a solvable model: (II). Linearization procedures, Nucl. Phys. 62, 199 (1965).
  38. H. J. Lipkin, N. Meshkov and A. J. Glick, Validity of many-body approximation methods for a solvable model: (III). Diagram summations, Nucl. Phys. 62, 211 (1965).
  39. Large Magnetic Anisotropy of a Single Atomic Spin Embedded in a Surface Molecular Network, Science 317, 1199 (2007).
  40. Quantum engineering of spin and anisotropy in magnetic molecular junctions, Nat. Commun. 6, 8536 (2015).
  41. Classical Bifurcation at the Transition from Rabi to Josephson Dynamics, Phys. Rev. Lett. 105, 204101 (2010).
  42. Fundamental Limit of Phase Coherence in Two-Component Bose-Einstein Condensates, Phys. Rev. Lett. 125, 123402 (2020).
  43. R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nat. Phys. 8, 277 (2012).
  44. Non-local propagation of correlations in quantum systems with long-range interactions, Nature 511, 198 (2014).
  45. Quasiparticle engineering and entanglement propagation in a quantum many-body system, Nature 511, 202 (2014).
  46. Quantum Non-demolition Measurement of a Many-Body Hamiltonian, Nat. Commun. 11, 775 (2020).
  47. Interaction-induced Lipkin-Meshkov-Glick model in a Bose-Einstein condensate inside an optical cavity, Opt. Express 17, 19682 (2009).
  48. J. Larson, Circuit QED scheme for the realization of the Lipkin-Meshkov-Glick model, EPL 90, 54001 (2010).
  49. Nonlinear atom interferometer surpasses classical precision limit, Nature 464, 1165 (2010).
  50. Atom-chip-based generation of entanglement for quantum metrology, Nature 464, 1170 (2010).
  51. Integrated Mach–Zehnder interferometer for Bose–Einstein condensates, Nat. Comm. 4, 2077 (2013).
  52. Excited-state quantum phase transitions in many-body systems with infinite-range interaction: Localization, dynamics, and bifurcation, Phys. Rev. A 94, 012113 (2016).
  53. S. Dusuel and J. Vidal, Finite-Size Scaling Exponents of the Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 93, 237204 (2004).
  54. W. D. Heiss, F. G. Scholtz and H. B. Geyer, The large N behaviour of the Lipkin model and exceptional points, J. Phys. A 38, 1843 (2005).
  55. Decoherence as a signature of an excited-state quantum phase transition, Phys. Rev. A 78, 060102(R) (2008).
  56. Q. Wang and H. T. Quan, Probing the excited-state quantum phase transition through statistics of Loschmidt echo and quantum work, Phys. Rev. E 96, 032142 (2017).
  57. P. Ribeiro, J. Vidal and R. Mosseri, Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections, Phys. Rev. E 78, 021106 (2008).
  58. Decoherence due to an excited-state quantum phase transition in a two-level boson model, Phys. Rev. A 80, 032111 (2009).
  59. W. Kopylov, G. Schaller and T. Brandes, Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model, Phys. Rev. E 96, 012153 (2017).
  60. L. Campos Venuti and P. Zanardi, Quantum Critical Scaling of the Geometric Tensors, Phys. Rev. Lett. 99, 095701 (2007).
  61. P. Zanardi, P. Giorda and M. Cozzini, Information-Theoretic Differential Geometry of Quantum Phase Transitions, Phys. Rev. Lett. 99, 100603 (2007).
  62. W.-L. You, Y.-W. Li and S.-J. Gu, Fidelity, dynamic structure factor, and susceptibility in critical phenomena, Phys. Rev. E 76, 022101 (2007).
  63. Quantum criticality as a resource for quantum estimation, Phys. Rev. A 78, 042105 (2008).
  64. H.-P. Breuer and F. Petruccione, The theory of open quantum systems, Oxford University Press (2002).
  65. F. Benatti and R. Floreanini, Open Quantum Dynamics: Complete Positivity and Entanglement, Int. J. Mod. Phys. B 19, 3063 (2005).
  66. S.-B. Zheng, Arbitrary control of multiple-qubit systems in the symmetric Dicke subspace, Phys. Rev. A 77, 033852 (2008).
  67. S. B. Zheng, Quantum state engineering for multiple hot trapped ions in the symmetric Dicke subspace, Eur. Phys. J. D 54, 715 (2009).
  68. D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83, 5162 (1999).
  69. Principles of Quantum Computation and Information: A Comprehensive Textbook, World Scientific (2019).
  70. D. Janzing, Quantum algorithm for measuring the energy of n qubits with unknown pair-interactions, Quantum Inf. Comput. 2, 198 (2002).
  71. Adding control to arbitrary unknown quantum operations, Nat. Commun. 2, 413 (2011).
  72. Calculating unknown eigenvalues with a quantum algorithm, Nat. Photonics 7, 223 (2013).
  73. Implementing quantum control for unknown subroutines, Phys. Rev. A 89, 030303(R) (2014).
  74. S. Nakayama, A. Soeda and M. Murao, Quantum algorithm for universal implementation of the projective measurement of energy, Phys. Rev. Lett. 114, 190501 (2015).
  75. J. C. Louw, J. N. Kriel and M. Kastner, Thermalization of a Lipkin-Meshkov-Glick model coupled to a bosonic bath, Phys. Rev. A 100, 022115 (2019).
  76. M. Ostilli and C. Presilla, Thermalization of noninteracting quantum systems coupled to blackbody radiation: A Lindblad-based analysis, Phys. Rev. A 95, 062112 (2017).
  77. T. Macrì, M. Ostilli and C. Presilla, Thermalization of the Lipkin-Meshkov-Glick model in blackbody radiation, Phys. Rev. A 95, 042107 (2017).
  78. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature 414, 883 (2001).
  79. Demonstration of a Compiled Version of Shor’s Quantum Factoring Algorithm Using Photonic Qubits, Phys. Rev. Lett. 99, 250504 (2007).
  80. Experimental Demonstration of a Compiled Version of Shor’s Algorithm with Quantum Entanglement, Phys. Rev. Lett. 99, 250505 (2007).
  81. Experimental realization of Shor’s quantum factoring algorithm using qubit recycling, Nat. Photonics 6, 773 (2012).
  82. Realization of a scalable Shor algorithm, Science 351, 1068 (2016).
  83. Proof-of-principle demonstration of compiled Shor’s algorithm using a quantum dot single-photon source, Opt. Express 13, 18917 (2020).
  84. K. M. Svore and M. Hastings, M. B. abd Freedman, Faster Phase Estimation, Quantum Inf. Comput. 14, 306 (2013).
  85. R. D. Somma, Quantum eigenvalue estimation via time series analysis, New J. Phys. 21, 123025 (2019).
  86. Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates, Quantum Sci. Technol. 5, 044005 (2020).
  87. M. Akahira and T. K., Non-Regular Statistical Estitnation, Springer-Verlag (2002).
  88. L. Seveso, M. A. C. Rossi and M. G. A. Paris, Quantum metrology beyond the quantum cramér-rao theorem, Phys. Rev. A 95, 012111 (2017).
  89. L. Seveso and M. G. A. Paris, Estimation of general hamiltonian parameters via controlled energy measurements, Phys. Rev. A 98, 032114 (2018).
  90. L. Seveso and M. G. A. Paris, Quantum enhanced metrology of Hamiltonian parameters beyond the Cramèr-Rao bound, Int. J. Quantum Inf. 18, 2030001 (2020).
  91. Spin squeezing and reduced quantum noise in spectroscopy, Phys. Rev. A 46, R6797 (1992).
  92. Improved quantum magnetometry beyond the standard quantum limit, Phys. Rev. X 5, 031010 (2015).
  93. Heisenberg-scaled magnetometer with dipolar spin-1 condensates, Phys. Rev. A 93, 043615 (2016).
  94. Quantum kalman filtering and the heisenberg limit in atomic magnetometry, Phys. Rev. Lett. 91, 250801 (2003).
  95. Magnetometry via a double-pass continuous quantum measurement of atomic spin, Phys. Rev. A 79, 062107 (2009).
  96. Ultimate limits for quantum magnetometry via time-continuous measurements, New J. Phys. 19, 123011 (2017).
  97. A. Kolkiran and G. S. Agarwal, Towards the Heisenberg limit in magnetometry with parametric down-converted photons, Phys. Rev. A 74, 053810 (2006).
  98. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond, Sci. Rep. 4, 4677 (2014).
  99. Compressed quantum metrology for the Ising Hamiltonian, Phys. Rev. A 94, 062326 (2016).
  100. J. Noufal, S. Omkar and A. Shajo, Quantum critical environment assisted quantum magnetometer, J. Phys. A 51, 175309 (2018).
  101. Entanglement-free Heisenberg-limited phase estimation, Nature 450, 393 (2007).
  102. Quantum-enhanced magnetometry by phase estimation algorithms with a single artificial atom, npj Quantum Inf 4, 29 (2018).
  103. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements, New J. Phys. 11, 073023 (2009).
  104. Sequential measurements for quantum-enhanced magnetometry in spin chain probes, ArXiv:2202.00114 (2022).
  105. Quantum limits on postselected, probabilistic quantum metrology, Phys. Rev. A 89, 052117 (2014).
  106. Quantum metrology in Lipkin-Meshkov-Glick critical systems, Phys. Rev. A 90, 022111 (2014).
  107. L.-P. Yang and Z. Jacob, Engineering first-order quantum phase transitions for weak signal detection, J. Appl. Phys. 7, 126 (2019).
  108. J. Cabedo, J. Claramunt and A. Celi, Dynamical preparation of stripe states in spin-orbit-coupled gases, Phys. Rev. A 104, L031305 (2021).
  109. Q.-W. Wang and S. Wu, Excited-state quantum phase transitions in Kerr nonlinear oscillators, Phys. Rev. A 102, 063531 (2020).
  110. Critical quantum metrology with fully-connected models: from Heisenberg to Kibble–Zurek scaling, Quantum Sci. Technol. 7, 035010 (2022).
  111. Y. Wada and N. Fukuda, Exact Treatment of Bardeen’s Theory of Superconductivity in the Strong Coupling Limit, Prog. Theor. Phys. 19, 597 (1958).
  112. Y. Wada and N. Fukuda, On the Theory of Superconductivity, Prog. Theor. Phys. 22, 775 (1959).
  113. Quantum criticality in a bosonic Josephson junction, Phys. Rev. A 85, 043625 (2012).
  114. Finite-size criticality in fully connected spin models on superconducting quantum hardware, Phys. Rev. E 107, 024113 (2023).
  115. A. Messiah, Quantum mechanics: volume II, North Holland Publishing Company (1962).
  116. Quantum criticality of the Lipkin-Meshkov-Glick model in terms of fidelity susceptibility, Phys. Rev. E 78, 032103 (2008).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com